
FFMPEG UNITY BIND 3.2

1. Take a look how it is organized in FFmpegDemo scene.

2. Build on device to test demo scene.  
Screen orientation is Landscape.  
On Android make sure that you’ve checked Write Permission -> External
(SDCard).

FFMPEG UNITY BINDING

On IOS it is important to check if Universal build architecture selected. Rest
of the job should do IOSPostBuild.cs  

On Mac OS please make sure you have all rights to execute ffmpeg binary
file in Assets/FFmpeg/Standalone/Mac folder. Usually script tries to grant
permissions automatic. You can also manually navigate to this directory in
terminal and execute: chmod 700 ffmpeg
3. Fill example fields in specified format end inspect output results in
Android file manager. Play with direct input console to do the same by your
unique commands.  
On IOS there is a Video Picker helper which simplifies things. You can
inspect results via external software like iExplorer. Here is an Educational
(FREE) version of it for Mac.

FFMPEG UNITY BINDING

http://www.thinkplexx.com/learn/article/unix/command/chmod-permissions-flags-explained-600-0600-700-777-100-etc
https://macroplant.com/iexplorer
https://drive.google.com/open?id=0B6uoe6kL6KHoNFFJbW01SFd0Xzg

4. Build on device and test FFmpegREC scene. It is absolutely cross-
platform. Every frame a screenshot is taken and in the end all of them
encoded to the video.  
On slow devices you can reduce capturing FPS (which improves
performance of screenshots making) or / and reduce resolution (boost all).

Set up own scene
1. Put FFmpeg.prefab to your scene. That’s it.
2. Usage: Make copy of FFmpegDemo.cs rename it and change according

to needs of your application.  

Understanding code
1. FFmpegWrapper implements 2 simple methods needed for all

operations (initialization and execute). Initialization is performed in unity
Start() method and there is nothing special about it (NOTE: you should
call other operation after initialization). Execute(string[] cmd) is a console
interface for all FFmpeg operations. You can work with that directly or
using Helpers additionally included into this package.

2. Helpers:  
- FFmpegCommands: Encapsulates commands construction to have
simple call from application logic (Convert, Trim etc). Constructed
commands are sent to FFmpegWrapper. You can send commands
directly to FFmpegWrapper.Execute(string[] cmd).  
- FFmpegParsers: Gets FFmpeg events from response string and calls
them. Make sure that you’ve assigned handler for events receiving:  

 

- IFFmpegHandler: Implement it to know when video operations was
finished and when it is processing (see FFmpegDemo.cs).

- FFmpegConfigs: Simple data structures with commands construction
parameters. It is used by FFmpegCommands.  

On your own
1. This version of FFmpeg library is used for binding on Android:  

https://writingminds.github.io/ffmpeg-android/
2. This is specific Android assembly:  

https://github.com/WritingMinds/ffmpeg-android-java
3. On IOS FFmpeg was built like this:  

https://github.com/kewlbear/FFmpeg-iOS-build-script
4. Learn FFmpeg cross-platform api and have all power of it functionality:  

https://ffmpeg.org/documentation.html

Support
1. FFmpeg Unity Bind offers just a platforms binding.
2. F.A.Q. Support: biz@giganeo.com

https://writingminds.github.io/ffmpeg-android/
https://github.com/WritingMinds/ffmpeg-android-java
https://github.com/kewlbear/FFmpeg-iOS-build-script
https://ffmpeg.org/documentation.html
http://giganeo.com/2017/10/29/ffmpeg-unity-bind/
mailto:biz@giganeo.com

