上海苏宁宝丽嘉酒店,2020.11.17 15:30改为单机版本,以后合成单机版本可以以此版本为模板
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

329 lines
10 KiB

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using UnityEngine;
[RequireComponent(typeof(MeshFilter))]
[RequireComponent(typeof(MeshRenderer))]
[RequireComponent(typeof(MeshCollider))]
public class Polygon : MonoBehaviour
{
private MeshCollider meshCollider;
private Material material;
private Mesh mesh;
void Awake()
{
material = GetComponent<MeshRenderer>().material;
mesh = GetComponent<MeshFilter>().mesh;
meshCollider = GetComponent<MeshCollider>();
}
public void SetVertices(Vector3[] vertices)
{
mesh.Clear();
mesh.vertices = vertices;
//mesh.triangles = GetTriangles(vertices);
List<int> indexes = new List<int>();
int index = 0;
for (int i=0;i< vertices.Length;i++)
{
indexes.Add(index++);
}
mesh.triangles=WidelyTriangleIndex(vertices.ToList(), indexes).ToArray();
// 实时调整碰撞器形状,以便可以正确响应碰撞
meshCollider.sharedMesh = mesh;
}
public Color Color
{
get { return material.color; }
set { material.color = value; }
}
/// <summary>
/// 计算多边形重心
/// </summary>
/// <param name="mPoints"></param>
/// <returns></returns>
public Vector3 getCenterOfGravityPoint(List<Vector3> mPoints)
{
float area = 0.0f;//多边形面积
float Gx = 0.0f, Gz = 0.0f;// 重心的x、y
for (int i = 1; i <= mPoints.Count; i++)
{
float iLat = mPoints[(i % mPoints.Count())].x;
float iLng = mPoints[(i % mPoints.Count())].z;
float nextLat = mPoints[(i - 1)].x;
float nextLng = mPoints[(i - 1)].z;
float temp = (iLat * nextLng - iLng * nextLat) / 2.0f;
area += temp;
Gx += temp * (iLat + nextLat) / 3.0f;
Gz += temp * (iLng + nextLng) / 3.0f;
}
Gx = Gx / area;
Gz = Gz / area;
return new Vector3(Gx, mPoints[0].y, Gz);
}
//FIXME: 这个算法有缺陷,能较好地处理凸多边形,但在处理复杂多边形(比如重复点,自交,带洞,反向折叠)时会有问题
private int[] GetTriangles(Vector3[] vertices)
{
var count = vertices.Length - 2;
var triangles = new int[count * 3];
var front = 0;
var back = vertices.Length - 1;
for (var i = 1; i <= count; i++)
{
if (i % 2 == 1)
{
triangles[i * 3 - 3] = front++;
triangles[i * 3 - 2] = front;
triangles[i * 3 - 1] = back;
}
else
{
triangles[i * 3 - 1] = back--;
triangles[i * 3 - 2] = back;
triangles[i * 3 - 3] = front;
}
}
return triangles;
}
/// <summary>
/// 三角剖分
/// 1.寻找一个可划分顶点
/// 2.分割出新的多边形和三角形
/// 3.新多边形若为凸多边形,结束;否则继续剖分
///
/// 寻找可划分顶点
/// 1.顶点是否为凸顶点:顶点在剩余顶点组成的图形外
/// 2.新的多边形没有顶点在分割的三角形内
/// </summary>
/// <param name="verts">顺时针排列的顶点列表</param>
/// <param name="indexes">顶点索引列表</param>
/// <returns>三角形列表</returns>
public List<int> WidelyTriangleIndex(List<Vector3> verts, List<int> indexes)
{
int len = verts.Count;
if (len <= 3) return ConvexTriangleIndex(verts, indexes);
int searchIndex = 0;
List<int> covexIndex = new List<int>();
bool isCovexPolygon = true;//判断多边形是否是凸多边形
for (searchIndex = 0; searchIndex < len; searchIndex++)
{
List<Vector3> polygon = new List<Vector3>(verts.ToArray());
polygon.RemoveAt(searchIndex);
if (IsPointInsidePolygon(verts[searchIndex], polygon))
{
isCovexPolygon = false;
break;
}
else
{
covexIndex.Add(searchIndex);
}
}
if (isCovexPolygon) return ConvexTriangleIndex(verts, indexes);
//查找可划分顶点
int canFragementIndex = -1;//可划分顶点索引
for (int i = 0; i < len; i++)
{
if (i > searchIndex)
{
List<Vector3> polygon = new List<Vector3>(verts.ToArray());
polygon.RemoveAt(i);
if (!IsPointInsidePolygon(verts[i], polygon) && IsFragementIndex(i, verts))
{
canFragementIndex = i;
break;
}
}
else
{
if (covexIndex.IndexOf(i) != -1 && IsFragementIndex(i, verts))
{
canFragementIndex = i;
break;
}
}
}
if (canFragementIndex < 0)
{
Debug.LogError("数据有误找不到可划分顶点");
return new List<int>();
}
//用可划分顶点将凹多边形划分为一个三角形和一个多边形
List<int> tTriangles = new List<int>();
int next = (canFragementIndex == len - 1) ? 0 : canFragementIndex + 1;
int prev = (canFragementIndex == 0) ? len - 1 : canFragementIndex - 1;
tTriangles.Add(indexes[prev]);
tTriangles.Add(indexes[canFragementIndex]);
tTriangles.Add(indexes[next]);
//剔除可划分顶点及索引
verts.RemoveAt(canFragementIndex);
indexes.RemoveAt(canFragementIndex);
//递归划分
List<int> leaveTriangles = WidelyTriangleIndex(verts, indexes);
tTriangles.AddRange(leaveTriangles);
return tTriangles;
}
/// <summary>
/// 凸多边形,顺时针序列,以第1个点来剖分三角形,如下:
/// 0---1
/// | |
/// 3---2 --> (0, 1, 2)、(0, 2, 3)
/// </summary>
/// <param name="verts">顺时针排列的顶点列表</param>
/// <param name="indexes">顶点索引列表</param>
/// <returns>三角形列表</returns>
public List<int> ConvexTriangleIndex(List<Vector3> verts, List<int> indexes)
{
int len = verts.Count;
//若是闭环去除最后一点
if (len > 1 && Vector3Equal(verts[0], verts[len - 1]))
{
len--;
}
int triangleNum = len - 2;
List<int> triangles = new List<int>(triangleNum * 3);
for (int i = 0; i < triangleNum; i++)
{
triangles.Add(indexes[0]);
triangles.Add(indexes[i + 1]);
triangles.Add(indexes[i + 2]);
}
return triangles;
}
/// <summary>
/// 点与多边形的位置关系
/// </summary>
/// <param name="point">判定点</param>
/// <param name="polygonVerts">剩余顶点按顺序排列的多边形</param>
/// <returns>true:点在多边形之内,false:相反</returns>
private bool IsPointInsidePolygon(Vector3 point, List<Vector3> polygonVerts)
{
int len = polygonVerts.Count;
Ray ray = new Ray(point, new Vector3(0, 0, 1)); //y方向射线
int interNum = 0;
for (int i = 1; i < len; i++)
{
if (IsDetectIntersect(ray, polygonVerts[i - 1], polygonVerts[i]))
{
interNum++;
}
}
//不是闭环
if (!Vector3Equal(polygonVerts[0], polygonVerts[len - 1]))
{
if (IsDetectIntersect(ray, polygonVerts[len - 1], polygonVerts[0]))
{
interNum++;
}
}
int remainder = interNum % 2;
return remainder == 1;
}
/// <summary>
/// 是否是可划分顶点:新的多边形没有顶点在分割的三角形内
/// </summary>
private bool IsFragementIndex(int index, List<Vector3> verts)
{
int len = verts.Count;
List<Vector3> triangleVert = new List<Vector3>();
int next = (index == len - 1) ? 0 : index + 1;
int prev = (index == 0) ? len - 1 : index - 1;
triangleVert.Add(verts[prev]);
triangleVert.Add(verts[index]);
triangleVert.Add(verts[next]);
for (int i = 0; i < len; i++)
{
if (i != index && i != prev && i != next)
{
if (IsPointInsidePolygon(verts[i], triangleVert))
{
return false;
}
}
}
return true;
}
/// <summary>
/// 射线与线段相交性判断
/// </summary>
/// <param name="ray">射线</param>
/// <param name="p1">线段头</param>
/// <param name="p2">线段尾</param>
/// <returns></returns>
private bool IsDetectIntersect(Ray ray, Vector3 p1, Vector3 p2)
{
float pointZ;//交点z坐标,x固定值
if (floatEqual(p1.x, p2.x))
{
return false;
}
else if (floatEqual(p1.z, p2.z))
{
pointZ = p1.z;
}
else
{
//直线两点式方程:(y-y2)/(y1-y2) = (x-x2)/(x1-x2)
float a = p1.x - p2.x;
float b = p1.z - p2.z;
float c = p2.z / b - p2.x / a;
pointZ = b / a * ray.origin.x + b * c;
}
if (floatLess(pointZ, ray.origin.z))
{
//交点y小于射线起点y
return false;
}
else
{
Vector3 leftP = floatLess(p1.x, p2.x) ? p1 : p2;//左端点
Vector3 rightP = floatLess(p1.x, p2.x) ? p2 : p1;//右端点
//交点x位于线段两个端点x之外,相交与线段某个端点时,仅将射线L与左侧多边形一边的端点记为焦点(即就是:只将右端点记为交点)
if (!floatGreat(ray.origin.x, leftP.x) || floatGreat(ray.origin.x, rightP.x))
{
return false;
}
}
return true;
}
const double epsilon = 1e-7;
bool floatLess(float value, float other)
{
return (other - value) > epsilon;
}
bool floatGreat(float value, float other)
{
return (value - other) > epsilon;
}
bool floatEqual(float value, float other)
{
return Mathf.Abs(value - other) < epsilon;
}
bool Vector3Equal(Vector3 a, Vector3 b)
{
return floatEqual(a.x, b.x) && floatEqual(a.y, b.y) && floatEqual(a.z, b.z);
}
}