You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
251 lines
8.5 KiB
251 lines
8.5 KiB
1 year ago
|
#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
|
||
|
#pragma warning disable
|
||
|
using System;
|
||
|
|
||
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Digests;
|
||
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters;
|
||
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Math;
|
||
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC;
|
||
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC.Multiplier;
|
||
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Security;
|
||
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities;
|
||
|
|
||
|
namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Signers
|
||
|
{
|
||
|
/**
|
||
|
* EC-DSA as described in X9.62
|
||
|
*/
|
||
|
public class ECDsaSigner
|
||
|
: IDsaExt
|
||
|
{
|
||
|
private static readonly BigInteger Eight = BigInteger.ValueOf(8);
|
||
|
|
||
|
protected readonly IDsaKCalculator kCalculator;
|
||
|
|
||
|
protected ECKeyParameters key = null;
|
||
|
protected SecureRandom random = null;
|
||
|
|
||
|
/**
|
||
|
* Default configuration, random K values.
|
||
|
*/
|
||
|
public ECDsaSigner()
|
||
|
{
|
||
|
this.kCalculator = new RandomDsaKCalculator();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Configuration with an alternate, possibly deterministic calculator of K.
|
||
|
*
|
||
|
* @param kCalculator a K value calculator.
|
||
|
*/
|
||
|
public ECDsaSigner(IDsaKCalculator kCalculator)
|
||
|
{
|
||
|
this.kCalculator = kCalculator;
|
||
|
}
|
||
|
|
||
|
public virtual string AlgorithmName
|
||
|
{
|
||
|
get { return "ECDSA"; }
|
||
|
}
|
||
|
|
||
|
public virtual void Init(bool forSigning, ICipherParameters parameters)
|
||
|
{
|
||
|
SecureRandom providedRandom = null;
|
||
|
|
||
|
if (forSigning)
|
||
|
{
|
||
|
if (parameters is ParametersWithRandom)
|
||
|
{
|
||
|
ParametersWithRandom rParam = (ParametersWithRandom)parameters;
|
||
|
|
||
|
providedRandom = rParam.Random;
|
||
|
parameters = rParam.Parameters;
|
||
|
}
|
||
|
|
||
|
if (!(parameters is ECPrivateKeyParameters))
|
||
|
throw new InvalidKeyException("EC private key required for signing");
|
||
|
|
||
|
this.key = (ECPrivateKeyParameters)parameters;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (!(parameters is ECPublicKeyParameters))
|
||
|
throw new InvalidKeyException("EC public key required for verification");
|
||
|
|
||
|
this.key = (ECPublicKeyParameters)parameters;
|
||
|
}
|
||
|
|
||
|
this.random = InitSecureRandom(forSigning && !kCalculator.IsDeterministic, providedRandom);
|
||
|
}
|
||
|
|
||
|
public virtual BigInteger Order
|
||
|
{
|
||
|
get { return key.Parameters.N; }
|
||
|
}
|
||
|
|
||
|
// 5.3 pg 28
|
||
|
/**
|
||
|
* Generate a signature for the given message using the key we were
|
||
|
* initialised with. For conventional DSA the message should be a SHA-1
|
||
|
* hash of the message of interest.
|
||
|
*
|
||
|
* @param message the message that will be verified later.
|
||
|
*/
|
||
|
public virtual BigInteger[] GenerateSignature(byte[] message)
|
||
|
{
|
||
|
ECDomainParameters ec = key.Parameters;
|
||
|
BigInteger n = ec.N;
|
||
|
BigInteger e = CalculateE(n, message);
|
||
|
BigInteger d = ((ECPrivateKeyParameters)key).D;
|
||
|
|
||
|
if (kCalculator.IsDeterministic)
|
||
|
{
|
||
|
kCalculator.Init(n, d, message);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
kCalculator.Init(n, random);
|
||
|
}
|
||
|
|
||
|
BigInteger r, s;
|
||
|
|
||
|
ECMultiplier basePointMultiplier = CreateBasePointMultiplier();
|
||
|
|
||
|
// 5.3.2
|
||
|
do // Generate s
|
||
|
{
|
||
|
BigInteger k;
|
||
|
do // Generate r
|
||
|
{
|
||
|
k = kCalculator.NextK();
|
||
|
|
||
|
ECPoint p = basePointMultiplier.Multiply(ec.G, k).Normalize();
|
||
|
|
||
|
// 5.3.3
|
||
|
r = p.AffineXCoord.ToBigInteger().Mod(n);
|
||
|
}
|
||
|
while (r.SignValue == 0);
|
||
|
|
||
|
s = BigIntegers.ModOddInverse(n, k).Multiply(e.Add(d.Multiply(r))).Mod(n);
|
||
|
}
|
||
|
while (s.SignValue == 0);
|
||
|
|
||
|
return new BigInteger[]{ r, s };
|
||
|
}
|
||
|
|
||
|
// 5.4 pg 29
|
||
|
/**
|
||
|
* return true if the value r and s represent a DSA signature for
|
||
|
* the passed in message (for standard DSA the message should be
|
||
|
* a SHA-1 hash of the real message to be verified).
|
||
|
*/
|
||
|
public virtual bool VerifySignature(byte[] message, BigInteger r, BigInteger s)
|
||
|
{
|
||
|
BigInteger n = key.Parameters.N;
|
||
|
|
||
|
// r and s should both in the range [1,n-1]
|
||
|
if (r.SignValue < 1 || s.SignValue < 1
|
||
|
|| r.CompareTo(n) >= 0 || s.CompareTo(n) >= 0)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
BigInteger e = CalculateE(n, message);
|
||
|
BigInteger c = BigIntegers.ModOddInverseVar(n, s);
|
||
|
|
||
|
BigInteger u1 = e.Multiply(c).Mod(n);
|
||
|
BigInteger u2 = r.Multiply(c).Mod(n);
|
||
|
|
||
|
ECPoint G = key.Parameters.G;
|
||
|
ECPoint Q = ((ECPublicKeyParameters) key).Q;
|
||
|
|
||
|
ECPoint point = ECAlgorithms.SumOfTwoMultiplies(G, u1, Q, u2);
|
||
|
|
||
|
if (point.IsInfinity)
|
||
|
return false;
|
||
|
|
||
|
/*
|
||
|
* If possible, avoid normalizing the point (to save a modular inversion in the curve field).
|
||
|
*
|
||
|
* There are ~cofactor elements of the curve field that reduce (modulo the group order) to 'r'.
|
||
|
* If the cofactor is known and small, we generate those possible field values and project each
|
||
|
* of them to the same "denominator" (depending on the particular projective coordinates in use)
|
||
|
* as the calculated point.X. If any of the projected values matches point.X, then we have:
|
||
|
* (point.X / Denominator mod p) mod n == r
|
||
|
* as required, and verification succeeds.
|
||
|
*
|
||
|
* Based on an original idea by Gregory Maxwell (https://github.com/gmaxwell), as implemented in
|
||
|
* the libsecp256k1 project (https://github.com/bitcoin/secp256k1).
|
||
|
*/
|
||
|
ECCurve curve = point.Curve;
|
||
|
if (curve != null)
|
||
|
{
|
||
|
BigInteger cofactor = curve.Cofactor;
|
||
|
if (cofactor != null && cofactor.CompareTo(Eight) <= 0)
|
||
|
{
|
||
|
ECFieldElement D = GetDenominator(curve.CoordinateSystem, point);
|
||
|
if (D != null && !D.IsZero)
|
||
|
{
|
||
|
ECFieldElement X = point.XCoord;
|
||
|
while (curve.IsValidFieldElement(r))
|
||
|
{
|
||
|
ECFieldElement R = curve.FromBigInteger(r).Multiply(D);
|
||
|
if (R.Equals(X))
|
||
|
{
|
||
|
return true;
|
||
|
}
|
||
|
r = r.Add(n);
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
BigInteger v = point.Normalize().AffineXCoord.ToBigInteger().Mod(n);
|
||
|
return v.Equals(r);
|
||
|
}
|
||
|
|
||
|
protected virtual BigInteger CalculateE(BigInteger n, byte[] message)
|
||
|
{
|
||
|
int messageBitLength = message.Length * 8;
|
||
|
BigInteger trunc = new BigInteger(1, message);
|
||
|
|
||
|
if (n.BitLength < messageBitLength)
|
||
|
{
|
||
|
trunc = trunc.ShiftRight(messageBitLength - n.BitLength);
|
||
|
}
|
||
|
|
||
|
return trunc;
|
||
|
}
|
||
|
|
||
|
protected virtual ECMultiplier CreateBasePointMultiplier()
|
||
|
{
|
||
|
return new FixedPointCombMultiplier();
|
||
|
}
|
||
|
|
||
|
protected virtual ECFieldElement GetDenominator(int coordinateSystem, ECPoint p)
|
||
|
{
|
||
|
switch (coordinateSystem)
|
||
|
{
|
||
|
case ECCurve.COORD_HOMOGENEOUS:
|
||
|
case ECCurve.COORD_LAMBDA_PROJECTIVE:
|
||
|
case ECCurve.COORD_SKEWED:
|
||
|
return p.GetZCoord(0);
|
||
|
case ECCurve.COORD_JACOBIAN:
|
||
|
case ECCurve.COORD_JACOBIAN_CHUDNOVSKY:
|
||
|
case ECCurve.COORD_JACOBIAN_MODIFIED:
|
||
|
return p.GetZCoord(0).Square();
|
||
|
default:
|
||
|
return null;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
protected virtual SecureRandom InitSecureRandom(bool needed, SecureRandom provided)
|
||
|
{
|
||
|
return !needed ? null : (provided != null) ? provided : new SecureRandom();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#pragma warning restore
|
||
|
#endif
|