You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2183 lines
74 KiB
2183 lines
74 KiB
1 year ago
|
#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
|
||
|
#pragma warning disable
|
||
|
using System;
|
||
|
using System.Collections;
|
||
|
using System.Text;
|
||
|
|
||
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC.Multiplier;
|
||
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Security;
|
||
|
|
||
|
namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC
|
||
|
{
|
||
|
/**
|
||
|
* base class for points on elliptic curves.
|
||
|
*/
|
||
|
public abstract class ECPoint
|
||
|
{
|
||
|
private static readonly SecureRandom Random = new SecureRandom();
|
||
|
|
||
|
protected static ECFieldElement[] EMPTY_ZS = new ECFieldElement[0];
|
||
|
|
||
|
protected static ECFieldElement[] GetInitialZCoords(ECCurve curve)
|
||
|
{
|
||
|
// Cope with null curve, most commonly used by implicitlyCa
|
||
|
int coord = null == curve ? ECCurve.COORD_AFFINE : curve.CoordinateSystem;
|
||
|
|
||
|
switch (coord)
|
||
|
{
|
||
|
case ECCurve.COORD_AFFINE:
|
||
|
case ECCurve.COORD_LAMBDA_AFFINE:
|
||
|
return EMPTY_ZS;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
ECFieldElement one = curve.FromBigInteger(BigInteger.One);
|
||
|
|
||
|
switch (coord)
|
||
|
{
|
||
|
case ECCurve.COORD_HOMOGENEOUS:
|
||
|
case ECCurve.COORD_JACOBIAN:
|
||
|
case ECCurve.COORD_LAMBDA_PROJECTIVE:
|
||
|
return new ECFieldElement[] { one };
|
||
|
case ECCurve.COORD_JACOBIAN_CHUDNOVSKY:
|
||
|
return new ECFieldElement[] { one, one, one };
|
||
|
case ECCurve.COORD_JACOBIAN_MODIFIED:
|
||
|
return new ECFieldElement[] { one, curve.A };
|
||
|
default:
|
||
|
throw new ArgumentException("unknown coordinate system");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
protected internal readonly ECCurve m_curve;
|
||
|
protected internal readonly ECFieldElement m_x, m_y;
|
||
|
protected internal readonly ECFieldElement[] m_zs;
|
||
|
protected internal readonly bool m_withCompression;
|
||
|
|
||
|
// Dictionary is (string -> PreCompInfo)
|
||
|
protected internal IDictionary m_preCompTable = null;
|
||
|
|
||
|
protected ECPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
|
||
|
: this(curve, x, y, GetInitialZCoords(curve), withCompression)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
internal ECPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
|
||
|
{
|
||
|
this.m_curve = curve;
|
||
|
this.m_x = x;
|
||
|
this.m_y = y;
|
||
|
this.m_zs = zs;
|
||
|
this.m_withCompression = withCompression;
|
||
|
}
|
||
|
|
||
|
protected abstract bool SatisfiesCurveEquation();
|
||
|
|
||
|
protected virtual bool SatisfiesOrder()
|
||
|
{
|
||
|
if (BigInteger.One.Equals(Curve.Cofactor))
|
||
|
return true;
|
||
|
|
||
|
BigInteger n = Curve.Order;
|
||
|
|
||
|
// TODO Require order to be available for all curves
|
||
|
|
||
|
return n == null || ECAlgorithms.ReferenceMultiply(this, n).IsInfinity;
|
||
|
}
|
||
|
|
||
|
public ECPoint GetDetachedPoint()
|
||
|
{
|
||
|
return Normalize().Detach();
|
||
|
}
|
||
|
|
||
|
public virtual ECCurve Curve
|
||
|
{
|
||
|
get { return m_curve; }
|
||
|
}
|
||
|
|
||
|
protected abstract ECPoint Detach();
|
||
|
|
||
|
protected virtual int CurveCoordinateSystem
|
||
|
{
|
||
|
get
|
||
|
{
|
||
|
// Cope with null curve, most commonly used by implicitlyCa
|
||
|
return null == m_curve ? ECCurve.COORD_AFFINE : m_curve.CoordinateSystem;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the affine x-coordinate after checking that this point is normalized.
|
||
|
*
|
||
|
* @return The affine x-coordinate of this point
|
||
|
* @throws IllegalStateException if the point is not normalized
|
||
|
*/
|
||
|
public virtual ECFieldElement AffineXCoord
|
||
|
{
|
||
|
get
|
||
|
{
|
||
|
CheckNormalized();
|
||
|
return XCoord;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the affine y-coordinate after checking that this point is normalized
|
||
|
*
|
||
|
* @return The affine y-coordinate of this point
|
||
|
* @throws IllegalStateException if the point is not normalized
|
||
|
*/
|
||
|
public virtual ECFieldElement AffineYCoord
|
||
|
{
|
||
|
get
|
||
|
{
|
||
|
CheckNormalized();
|
||
|
return YCoord;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the x-coordinate.
|
||
|
*
|
||
|
* Caution: depending on the curve's coordinate system, this may not be the same value as in an
|
||
|
* affine coordinate system; use Normalize() to get a point where the coordinates have their
|
||
|
* affine values, or use AffineXCoord if you expect the point to already have been normalized.
|
||
|
*
|
||
|
* @return the x-coordinate of this point
|
||
|
*/
|
||
|
public virtual ECFieldElement XCoord
|
||
|
{
|
||
|
get { return m_x; }
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the y-coordinate.
|
||
|
*
|
||
|
* Caution: depending on the curve's coordinate system, this may not be the same value as in an
|
||
|
* affine coordinate system; use Normalize() to get a point where the coordinates have their
|
||
|
* affine values, or use AffineYCoord if you expect the point to already have been normalized.
|
||
|
*
|
||
|
* @return the y-coordinate of this point
|
||
|
*/
|
||
|
public virtual ECFieldElement YCoord
|
||
|
{
|
||
|
get { return m_y; }
|
||
|
}
|
||
|
|
||
|
public virtual ECFieldElement GetZCoord(int index)
|
||
|
{
|
||
|
return (index < 0 || index >= m_zs.Length) ? null : m_zs[index];
|
||
|
}
|
||
|
|
||
|
public virtual ECFieldElement[] GetZCoords()
|
||
|
{
|
||
|
int zsLen = m_zs.Length;
|
||
|
if (zsLen == 0)
|
||
|
{
|
||
|
return m_zs;
|
||
|
}
|
||
|
ECFieldElement[] copy = new ECFieldElement[zsLen];
|
||
|
Array.Copy(m_zs, 0, copy, 0, zsLen);
|
||
|
return copy;
|
||
|
}
|
||
|
|
||
|
protected internal ECFieldElement RawXCoord
|
||
|
{
|
||
|
get { return m_x; }
|
||
|
}
|
||
|
|
||
|
protected internal ECFieldElement RawYCoord
|
||
|
{
|
||
|
get { return m_y; }
|
||
|
}
|
||
|
|
||
|
protected internal ECFieldElement[] RawZCoords
|
||
|
{
|
||
|
get { return m_zs; }
|
||
|
}
|
||
|
|
||
|
protected virtual void CheckNormalized()
|
||
|
{
|
||
|
if (!IsNormalized())
|
||
|
throw new InvalidOperationException("point not in normal form");
|
||
|
}
|
||
|
|
||
|
public virtual bool IsNormalized()
|
||
|
{
|
||
|
int coord = this.CurveCoordinateSystem;
|
||
|
|
||
|
return coord == ECCurve.COORD_AFFINE
|
||
|
|| coord == ECCurve.COORD_LAMBDA_AFFINE
|
||
|
|| IsInfinity
|
||
|
|| RawZCoords[0].IsOne;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Normalization ensures that any projective coordinate is 1, and therefore that the x, y
|
||
|
* coordinates reflect those of the equivalent point in an affine coordinate system.
|
||
|
*
|
||
|
* @return a new ECPoint instance representing the same point, but with normalized coordinates
|
||
|
*/
|
||
|
public virtual ECPoint Normalize()
|
||
|
{
|
||
|
if (this.IsInfinity)
|
||
|
{
|
||
|
return this;
|
||
|
}
|
||
|
|
||
|
switch (this.CurveCoordinateSystem)
|
||
|
{
|
||
|
case ECCurve.COORD_AFFINE:
|
||
|
case ECCurve.COORD_LAMBDA_AFFINE:
|
||
|
{
|
||
|
return this;
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
ECFieldElement z = RawZCoords[0];
|
||
|
if (z.IsOne)
|
||
|
return this;
|
||
|
|
||
|
if (null == m_curve)
|
||
|
throw new InvalidOperationException("Detached points must be in affine coordinates");
|
||
|
|
||
|
/*
|
||
|
* Use blinding to avoid the side-channel leak identified and analyzed in the paper
|
||
|
* "Yet another GCD based inversion side-channel affecting ECC implementations" by Nir
|
||
|
* Drucker and Shay Gueron.
|
||
|
*
|
||
|
* To blind the calculation of z^-1, choose a multiplicative (i.e. non-zero) field
|
||
|
* element 'b' uniformly at random, then calculate the result instead as (z * b)^-1 * b.
|
||
|
* Any side-channel in the implementation of 'inverse' now only leaks information about
|
||
|
* the value (z * b), and no longer reveals information about 'z' itself.
|
||
|
*/
|
||
|
// TODO Add CryptoServicesRegistrar class and use here
|
||
|
//SecureRandom r = CryptoServicesRegistrar.GetSecureRandom();
|
||
|
SecureRandom r = Random;
|
||
|
ECFieldElement b = m_curve.RandomFieldElementMult(r);
|
||
|
ECFieldElement zInv = z.Multiply(b).Invert().Multiply(b);
|
||
|
return Normalize(zInv);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
internal virtual ECPoint Normalize(ECFieldElement zInv)
|
||
|
{
|
||
|
switch (this.CurveCoordinateSystem)
|
||
|
{
|
||
|
case ECCurve.COORD_HOMOGENEOUS:
|
||
|
case ECCurve.COORD_LAMBDA_PROJECTIVE:
|
||
|
{
|
||
|
return CreateScaledPoint(zInv, zInv);
|
||
|
}
|
||
|
case ECCurve.COORD_JACOBIAN:
|
||
|
case ECCurve.COORD_JACOBIAN_CHUDNOVSKY:
|
||
|
case ECCurve.COORD_JACOBIAN_MODIFIED:
|
||
|
{
|
||
|
ECFieldElement zInv2 = zInv.Square(), zInv3 = zInv2.Multiply(zInv);
|
||
|
return CreateScaledPoint(zInv2, zInv3);
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
throw new InvalidOperationException("not a projective coordinate system");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
protected virtual ECPoint CreateScaledPoint(ECFieldElement sx, ECFieldElement sy)
|
||
|
{
|
||
|
return Curve.CreateRawPoint(RawXCoord.Multiply(sx), RawYCoord.Multiply(sy), IsCompressed);
|
||
|
}
|
||
|
|
||
|
public bool IsInfinity
|
||
|
{
|
||
|
get { return m_x == null && m_y == null; }
|
||
|
}
|
||
|
|
||
|
public bool IsCompressed
|
||
|
{
|
||
|
get { return m_withCompression; }
|
||
|
}
|
||
|
|
||
|
public bool IsValid()
|
||
|
{
|
||
|
return ImplIsValid(false, true);
|
||
|
}
|
||
|
|
||
|
internal bool IsValidPartial()
|
||
|
{
|
||
|
return ImplIsValid(false, false);
|
||
|
}
|
||
|
|
||
|
internal bool ImplIsValid(bool decompressed, bool checkOrder)
|
||
|
{
|
||
|
if (IsInfinity)
|
||
|
return true;
|
||
|
|
||
|
ValidityCallback callback = new ValidityCallback(this, decompressed, checkOrder);
|
||
|
ValidityPreCompInfo validity = (ValidityPreCompInfo)Curve.Precompute(this, ValidityPreCompInfo.PRECOMP_NAME, callback);
|
||
|
return !validity.HasFailed();
|
||
|
}
|
||
|
|
||
|
public virtual ECPoint ScaleX(ECFieldElement scale)
|
||
|
{
|
||
|
return IsInfinity
|
||
|
? this
|
||
|
: Curve.CreateRawPoint(RawXCoord.Multiply(scale), RawYCoord, RawZCoords, IsCompressed);
|
||
|
}
|
||
|
|
||
|
public virtual ECPoint ScaleXNegateY(ECFieldElement scale)
|
||
|
{
|
||
|
return IsInfinity
|
||
|
? this
|
||
|
: Curve.CreateRawPoint(RawXCoord.Multiply(scale), RawYCoord.Negate(), RawZCoords, IsCompressed);
|
||
|
}
|
||
|
|
||
|
public virtual ECPoint ScaleY(ECFieldElement scale)
|
||
|
{
|
||
|
return IsInfinity
|
||
|
? this
|
||
|
: Curve.CreateRawPoint(RawXCoord, RawYCoord.Multiply(scale), RawZCoords, IsCompressed);
|
||
|
}
|
||
|
|
||
|
public virtual ECPoint ScaleYNegateX(ECFieldElement scale)
|
||
|
{
|
||
|
return IsInfinity
|
||
|
? this
|
||
|
: Curve.CreateRawPoint(RawXCoord.Negate(), RawYCoord.Multiply(scale), RawZCoords, IsCompressed);
|
||
|
}
|
||
|
|
||
|
public override bool Equals(object obj)
|
||
|
{
|
||
|
return Equals(obj as ECPoint);
|
||
|
}
|
||
|
|
||
|
public virtual bool Equals(ECPoint other)
|
||
|
{
|
||
|
if (this == other)
|
||
|
return true;
|
||
|
if (null == other)
|
||
|
return false;
|
||
|
|
||
|
ECCurve c1 = this.Curve, c2 = other.Curve;
|
||
|
bool n1 = (null == c1), n2 = (null == c2);
|
||
|
bool i1 = IsInfinity, i2 = other.IsInfinity;
|
||
|
|
||
|
if (i1 || i2)
|
||
|
{
|
||
|
return (i1 && i2) && (n1 || n2 || c1.Equals(c2));
|
||
|
}
|
||
|
|
||
|
ECPoint p1 = this, p2 = other;
|
||
|
if (n1 && n2)
|
||
|
{
|
||
|
// Points with null curve are in affine form, so already normalized
|
||
|
}
|
||
|
else if (n1)
|
||
|
{
|
||
|
p2 = p2.Normalize();
|
||
|
}
|
||
|
else if (n2)
|
||
|
{
|
||
|
p1 = p1.Normalize();
|
||
|
}
|
||
|
else if (!c1.Equals(c2))
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// TODO Consider just requiring already normalized, to avoid silent performance degradation
|
||
|
|
||
|
ECPoint[] points = new ECPoint[] { this, c1.ImportPoint(p2) };
|
||
|
|
||
|
// TODO This is a little strong, really only requires coZNormalizeAll to get Zs equal
|
||
|
c1.NormalizeAll(points);
|
||
|
|
||
|
p1 = points[0];
|
||
|
p2 = points[1];
|
||
|
}
|
||
|
|
||
|
return p1.XCoord.Equals(p2.XCoord) && p1.YCoord.Equals(p2.YCoord);
|
||
|
}
|
||
|
|
||
|
public override int GetHashCode()
|
||
|
{
|
||
|
ECCurve c = this.Curve;
|
||
|
int hc = (null == c) ? 0 : ~c.GetHashCode();
|
||
|
|
||
|
if (!this.IsInfinity)
|
||
|
{
|
||
|
// TODO Consider just requiring already normalized, to avoid silent performance degradation
|
||
|
|
||
|
ECPoint p = Normalize();
|
||
|
|
||
|
hc ^= p.XCoord.GetHashCode() * 17;
|
||
|
hc ^= p.YCoord.GetHashCode() * 257;
|
||
|
}
|
||
|
|
||
|
return hc;
|
||
|
}
|
||
|
|
||
|
public override string ToString()
|
||
|
{
|
||
|
if (this.IsInfinity)
|
||
|
{
|
||
|
return "INF";
|
||
|
}
|
||
|
|
||
|
StringBuilder sb = new StringBuilder();
|
||
|
sb.Append('(');
|
||
|
sb.Append(RawXCoord);
|
||
|
sb.Append(',');
|
||
|
sb.Append(RawYCoord);
|
||
|
for (int i = 0; i < m_zs.Length; ++i)
|
||
|
{
|
||
|
sb.Append(',');
|
||
|
sb.Append(m_zs[i]);
|
||
|
}
|
||
|
sb.Append(')');
|
||
|
return sb.ToString();
|
||
|
}
|
||
|
|
||
|
public virtual byte[] GetEncoded()
|
||
|
{
|
||
|
return GetEncoded(m_withCompression);
|
||
|
}
|
||
|
|
||
|
public abstract byte[] GetEncoded(bool compressed);
|
||
|
|
||
|
protected internal abstract bool CompressionYTilde { get; }
|
||
|
|
||
|
public abstract ECPoint Add(ECPoint b);
|
||
|
public abstract ECPoint Subtract(ECPoint b);
|
||
|
public abstract ECPoint Negate();
|
||
|
|
||
|
public virtual ECPoint TimesPow2(int e)
|
||
|
{
|
||
|
if (e < 0)
|
||
|
throw new ArgumentException("cannot be negative", "e");
|
||
|
|
||
|
ECPoint p = this;
|
||
|
while (--e >= 0)
|
||
|
{
|
||
|
p = p.Twice();
|
||
|
}
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
public abstract ECPoint Twice();
|
||
|
public abstract ECPoint Multiply(BigInteger b);
|
||
|
|
||
|
public virtual ECPoint TwicePlus(ECPoint b)
|
||
|
{
|
||
|
return Twice().Add(b);
|
||
|
}
|
||
|
|
||
|
public virtual ECPoint ThreeTimes()
|
||
|
{
|
||
|
return TwicePlus(this);
|
||
|
}
|
||
|
|
||
|
private class ValidityCallback
|
||
|
: IPreCompCallback
|
||
|
{
|
||
|
private readonly ECPoint m_outer;
|
||
|
private readonly bool m_decompressed, m_checkOrder;
|
||
|
|
||
|
internal ValidityCallback(ECPoint outer, bool decompressed, bool checkOrder)
|
||
|
{
|
||
|
this.m_outer = outer;
|
||
|
this.m_decompressed = decompressed;
|
||
|
this.m_checkOrder = checkOrder;
|
||
|
}
|
||
|
|
||
|
public PreCompInfo Precompute(PreCompInfo existing)
|
||
|
{
|
||
|
ValidityPreCompInfo info = existing as ValidityPreCompInfo;
|
||
|
if (info == null)
|
||
|
{
|
||
|
info = new ValidityPreCompInfo();
|
||
|
}
|
||
|
|
||
|
if (info.HasFailed())
|
||
|
return info;
|
||
|
|
||
|
if (!info.HasCurveEquationPassed())
|
||
|
{
|
||
|
if (!m_decompressed && !m_outer.SatisfiesCurveEquation())
|
||
|
{
|
||
|
info.ReportFailed();
|
||
|
return info;
|
||
|
}
|
||
|
info.ReportCurveEquationPassed();
|
||
|
}
|
||
|
if (m_checkOrder && !info.HasOrderPassed())
|
||
|
{
|
||
|
if (!m_outer.SatisfiesOrder())
|
||
|
{
|
||
|
info.ReportFailed();
|
||
|
return info;
|
||
|
}
|
||
|
info.ReportOrderPassed();
|
||
|
}
|
||
|
return info;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public abstract class ECPointBase
|
||
|
: ECPoint
|
||
|
{
|
||
|
protected internal ECPointBase(
|
||
|
ECCurve curve,
|
||
|
ECFieldElement x,
|
||
|
ECFieldElement y,
|
||
|
bool withCompression)
|
||
|
: base(curve, x, y, withCompression)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
protected internal ECPointBase(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
|
||
|
: base(curve, x, y, zs, withCompression)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* return the field element encoded with point compression. (S 4.3.6)
|
||
|
*/
|
||
|
public override byte[] GetEncoded(bool compressed)
|
||
|
{
|
||
|
if (this.IsInfinity)
|
||
|
{
|
||
|
return new byte[1];
|
||
|
}
|
||
|
|
||
|
ECPoint normed = Normalize();
|
||
|
|
||
|
byte[] X = normed.XCoord.GetEncoded();
|
||
|
|
||
|
if (compressed)
|
||
|
{
|
||
|
byte[] PO = new byte[X.Length + 1];
|
||
|
PO[0] = (byte)(normed.CompressionYTilde ? 0x03 : 0x02);
|
||
|
Array.Copy(X, 0, PO, 1, X.Length);
|
||
|
return PO;
|
||
|
}
|
||
|
|
||
|
byte[] Y = normed.YCoord.GetEncoded();
|
||
|
|
||
|
{
|
||
|
byte[] PO = new byte[X.Length + Y.Length + 1];
|
||
|
PO[0] = 0x04;
|
||
|
Array.Copy(X, 0, PO, 1, X.Length);
|
||
|
Array.Copy(Y, 0, PO, X.Length + 1, Y.Length);
|
||
|
return PO;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Multiplies this <code>ECPoint</code> by the given number.
|
||
|
* @param k The multiplicator.
|
||
|
* @return <code>k * this</code>.
|
||
|
*/
|
||
|
public override ECPoint Multiply(BigInteger k)
|
||
|
{
|
||
|
return this.Curve.GetMultiplier().Multiply(this, k);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public abstract class AbstractFpPoint
|
||
|
: ECPointBase
|
||
|
{
|
||
|
protected AbstractFpPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
|
||
|
: base(curve, x, y, withCompression)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
protected AbstractFpPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
|
||
|
: base(curve, x, y, zs, withCompression)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
protected internal override bool CompressionYTilde
|
||
|
{
|
||
|
get { return this.AffineYCoord.TestBitZero(); }
|
||
|
}
|
||
|
|
||
|
protected override bool SatisfiesCurveEquation()
|
||
|
{
|
||
|
ECFieldElement X = this.RawXCoord, Y = this.RawYCoord, A = Curve.A, B = Curve.B;
|
||
|
ECFieldElement lhs = Y.Square();
|
||
|
|
||
|
switch (CurveCoordinateSystem)
|
||
|
{
|
||
|
case ECCurve.COORD_AFFINE:
|
||
|
break;
|
||
|
case ECCurve.COORD_HOMOGENEOUS:
|
||
|
{
|
||
|
ECFieldElement Z = this.RawZCoords[0];
|
||
|
if (!Z.IsOne)
|
||
|
{
|
||
|
ECFieldElement Z2 = Z.Square(), Z3 = Z.Multiply(Z2);
|
||
|
lhs = lhs.Multiply(Z);
|
||
|
A = A.Multiply(Z2);
|
||
|
B = B.Multiply(Z3);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
case ECCurve.COORD_JACOBIAN:
|
||
|
case ECCurve.COORD_JACOBIAN_CHUDNOVSKY:
|
||
|
case ECCurve.COORD_JACOBIAN_MODIFIED:
|
||
|
{
|
||
|
ECFieldElement Z = this.RawZCoords[0];
|
||
|
if (!Z.IsOne)
|
||
|
{
|
||
|
ECFieldElement Z2 = Z.Square(), Z4 = Z2.Square(), Z6 = Z2.Multiply(Z4);
|
||
|
A = A.Multiply(Z4);
|
||
|
B = B.Multiply(Z6);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
throw new InvalidOperationException("unsupported coordinate system");
|
||
|
}
|
||
|
|
||
|
ECFieldElement rhs = X.Square().Add(A).Multiply(X).Add(B);
|
||
|
return lhs.Equals(rhs);
|
||
|
}
|
||
|
|
||
|
public override ECPoint Subtract(ECPoint b)
|
||
|
{
|
||
|
if (b.IsInfinity)
|
||
|
return this;
|
||
|
|
||
|
// Add -b
|
||
|
return Add(b.Negate());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Elliptic curve points over Fp
|
||
|
*/
|
||
|
public class FpPoint
|
||
|
: AbstractFpPoint
|
||
|
{
|
||
|
/**
|
||
|
* Create a point which encodes without point compression.
|
||
|
*
|
||
|
* @param curve the curve to use
|
||
|
* @param x affine x co-ordinate
|
||
|
* @param y affine y co-ordinate
|
||
|
*/
|
||
|
|
||
|
public FpPoint(ECCurve curve, ECFieldElement x, ECFieldElement y)
|
||
|
: this(curve, x, y, false)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Create a point that encodes with or without point compression.
|
||
|
*
|
||
|
* @param curve the curve to use
|
||
|
* @param x affine x co-ordinate
|
||
|
* @param y affine y co-ordinate
|
||
|
* @param withCompression if true encode with point compression
|
||
|
*/
|
||
|
|
||
|
public FpPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
|
||
|
: base(curve, x, y, withCompression)
|
||
|
{
|
||
|
if ((x == null) != (y == null))
|
||
|
throw new ArgumentException("Exactly one of the field elements is null");
|
||
|
}
|
||
|
|
||
|
internal FpPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
|
||
|
: base(curve, x, y, zs, withCompression)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
protected override ECPoint Detach()
|
||
|
{
|
||
|
return new FpPoint(null, AffineXCoord, AffineYCoord, false);
|
||
|
}
|
||
|
|
||
|
public override ECFieldElement GetZCoord(int index)
|
||
|
{
|
||
|
if (index == 1 && ECCurve.COORD_JACOBIAN_MODIFIED == this.CurveCoordinateSystem)
|
||
|
{
|
||
|
return GetJacobianModifiedW();
|
||
|
}
|
||
|
|
||
|
return base.GetZCoord(index);
|
||
|
}
|
||
|
|
||
|
// B.3 pg 62
|
||
|
public override ECPoint Add(ECPoint b)
|
||
|
{
|
||
|
if (this.IsInfinity)
|
||
|
return b;
|
||
|
if (b.IsInfinity)
|
||
|
return this;
|
||
|
if (this == b)
|
||
|
return Twice();
|
||
|
|
||
|
ECCurve curve = this.Curve;
|
||
|
int coord = curve.CoordinateSystem;
|
||
|
|
||
|
ECFieldElement X1 = this.RawXCoord, Y1 = this.RawYCoord;
|
||
|
ECFieldElement X2 = b.RawXCoord, Y2 = b.RawYCoord;
|
||
|
|
||
|
switch (coord)
|
||
|
{
|
||
|
case ECCurve.COORD_AFFINE:
|
||
|
{
|
||
|
ECFieldElement dx = X2.Subtract(X1), dy = Y2.Subtract(Y1);
|
||
|
|
||
|
if (dx.IsZero)
|
||
|
{
|
||
|
if (dy.IsZero)
|
||
|
{
|
||
|
// this == b, i.e. this must be doubled
|
||
|
return Twice();
|
||
|
}
|
||
|
|
||
|
// this == -b, i.e. the result is the point at infinity
|
||
|
return Curve.Infinity;
|
||
|
}
|
||
|
|
||
|
ECFieldElement gamma = dy.Divide(dx);
|
||
|
ECFieldElement X3 = gamma.Square().Subtract(X1).Subtract(X2);
|
||
|
ECFieldElement Y3 = gamma.Multiply(X1.Subtract(X3)).Subtract(Y1);
|
||
|
|
||
|
return new FpPoint(Curve, X3, Y3, IsCompressed);
|
||
|
}
|
||
|
|
||
|
case ECCurve.COORD_HOMOGENEOUS:
|
||
|
{
|
||
|
ECFieldElement Z1 = this.RawZCoords[0];
|
||
|
ECFieldElement Z2 = b.RawZCoords[0];
|
||
|
|
||
|
bool Z1IsOne = Z1.IsOne;
|
||
|
bool Z2IsOne = Z2.IsOne;
|
||
|
|
||
|
ECFieldElement u1 = Z1IsOne ? Y2 : Y2.Multiply(Z1);
|
||
|
ECFieldElement u2 = Z2IsOne ? Y1 : Y1.Multiply(Z2);
|
||
|
ECFieldElement u = u1.Subtract(u2);
|
||
|
ECFieldElement v1 = Z1IsOne ? X2 : X2.Multiply(Z1);
|
||
|
ECFieldElement v2 = Z2IsOne ? X1 : X1.Multiply(Z2);
|
||
|
ECFieldElement v = v1.Subtract(v2);
|
||
|
|
||
|
// Check if b == this or b == -this
|
||
|
if (v.IsZero)
|
||
|
{
|
||
|
if (u.IsZero)
|
||
|
{
|
||
|
// this == b, i.e. this must be doubled
|
||
|
return this.Twice();
|
||
|
}
|
||
|
|
||
|
// this == -b, i.e. the result is the point at infinity
|
||
|
return curve.Infinity;
|
||
|
}
|
||
|
|
||
|
// TODO Optimize for when w == 1
|
||
|
ECFieldElement w = Z1IsOne ? Z2 : Z2IsOne ? Z1 : Z1.Multiply(Z2);
|
||
|
ECFieldElement vSquared = v.Square();
|
||
|
ECFieldElement vCubed = vSquared.Multiply(v);
|
||
|
ECFieldElement vSquaredV2 = vSquared.Multiply(v2);
|
||
|
ECFieldElement A = u.Square().Multiply(w).Subtract(vCubed).Subtract(Two(vSquaredV2));
|
||
|
|
||
|
ECFieldElement X3 = v.Multiply(A);
|
||
|
ECFieldElement Y3 = vSquaredV2.Subtract(A).MultiplyMinusProduct(u, u2, vCubed);
|
||
|
ECFieldElement Z3 = vCubed.Multiply(w);
|
||
|
|
||
|
return new FpPoint(curve, X3, Y3, new ECFieldElement[] { Z3 }, IsCompressed);
|
||
|
}
|
||
|
|
||
|
case ECCurve.COORD_JACOBIAN:
|
||
|
case ECCurve.COORD_JACOBIAN_MODIFIED:
|
||
|
{
|
||
|
ECFieldElement Z1 = this.RawZCoords[0];
|
||
|
ECFieldElement Z2 = b.RawZCoords[0];
|
||
|
|
||
|
bool Z1IsOne = Z1.IsOne;
|
||
|
|
||
|
ECFieldElement X3, Y3, Z3, Z3Squared = null;
|
||
|
|
||
|
if (!Z1IsOne && Z1.Equals(Z2))
|
||
|
{
|
||
|
// TODO Make this available as public method coZAdd?
|
||
|
|
||
|
ECFieldElement dx = X1.Subtract(X2), dy = Y1.Subtract(Y2);
|
||
|
if (dx.IsZero)
|
||
|
{
|
||
|
if (dy.IsZero)
|
||
|
{
|
||
|
return Twice();
|
||
|
}
|
||
|
return curve.Infinity;
|
||
|
}
|
||
|
|
||
|
ECFieldElement C = dx.Square();
|
||
|
ECFieldElement W1 = X1.Multiply(C), W2 = X2.Multiply(C);
|
||
|
ECFieldElement A1 = W1.Subtract(W2).Multiply(Y1);
|
||
|
|
||
|
X3 = dy.Square().Subtract(W1).Subtract(W2);
|
||
|
Y3 = W1.Subtract(X3).Multiply(dy).Subtract(A1);
|
||
|
Z3 = dx;
|
||
|
|
||
|
if (Z1IsOne)
|
||
|
{
|
||
|
Z3Squared = C;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
Z3 = Z3.Multiply(Z1);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
ECFieldElement Z1Squared, U2, S2;
|
||
|
if (Z1IsOne)
|
||
|
{
|
||
|
Z1Squared = Z1; U2 = X2; S2 = Y2;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
Z1Squared = Z1.Square();
|
||
|
U2 = Z1Squared.Multiply(X2);
|
||
|
ECFieldElement Z1Cubed = Z1Squared.Multiply(Z1);
|
||
|
S2 = Z1Cubed.Multiply(Y2);
|
||
|
}
|
||
|
|
||
|
bool Z2IsOne = Z2.IsOne;
|
||
|
ECFieldElement Z2Squared, U1, S1;
|
||
|
if (Z2IsOne)
|
||
|
{
|
||
|
Z2Squared = Z2; U1 = X1; S1 = Y1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
Z2Squared = Z2.Square();
|
||
|
U1 = Z2Squared.Multiply(X1);
|
||
|
ECFieldElement Z2Cubed = Z2Squared.Multiply(Z2);
|
||
|
S1 = Z2Cubed.Multiply(Y1);
|
||
|
}
|
||
|
|
||
|
ECFieldElement H = U1.Subtract(U2);
|
||
|
ECFieldElement R = S1.Subtract(S2);
|
||
|
|
||
|
// Check if b == this or b == -this
|
||
|
if (H.IsZero)
|
||
|
{
|
||
|
if (R.IsZero)
|
||
|
{
|
||
|
// this == b, i.e. this must be doubled
|
||
|
return this.Twice();
|
||
|
}
|
||
|
|
||
|
// this == -b, i.e. the result is the point at infinity
|
||
|
return curve.Infinity;
|
||
|
}
|
||
|
|
||
|
ECFieldElement HSquared = H.Square();
|
||
|
ECFieldElement G = HSquared.Multiply(H);
|
||
|
ECFieldElement V = HSquared.Multiply(U1);
|
||
|
|
||
|
X3 = R.Square().Add(G).Subtract(Two(V));
|
||
|
Y3 = V.Subtract(X3).MultiplyMinusProduct(R, G, S1);
|
||
|
|
||
|
Z3 = H;
|
||
|
if (!Z1IsOne)
|
||
|
{
|
||
|
Z3 = Z3.Multiply(Z1);
|
||
|
}
|
||
|
if (!Z2IsOne)
|
||
|
{
|
||
|
Z3 = Z3.Multiply(Z2);
|
||
|
}
|
||
|
|
||
|
// Alternative calculation of Z3 using fast square
|
||
|
//X3 = four(X3);
|
||
|
//Y3 = eight(Y3);
|
||
|
//Z3 = doubleProductFromSquares(Z1, Z2, Z1Squared, Z2Squared).Multiply(H);
|
||
|
|
||
|
if (Z3 == H)
|
||
|
{
|
||
|
Z3Squared = HSquared;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ECFieldElement[] zs;
|
||
|
if (coord == ECCurve.COORD_JACOBIAN_MODIFIED)
|
||
|
{
|
||
|
// TODO If the result will only be used in a subsequent addition, we don't need W3
|
||
|
ECFieldElement W3 = CalculateJacobianModifiedW(Z3, Z3Squared);
|
||
|
|
||
|
zs = new ECFieldElement[] { Z3, W3 };
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
zs = new ECFieldElement[] { Z3 };
|
||
|
}
|
||
|
|
||
|
return new FpPoint(curve, X3, Y3, zs, IsCompressed);
|
||
|
}
|
||
|
|
||
|
default:
|
||
|
{
|
||
|
throw new InvalidOperationException("unsupported coordinate system");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// B.3 pg 62
|
||
|
public override ECPoint Twice()
|
||
|
{
|
||
|
if (this.IsInfinity)
|
||
|
return this;
|
||
|
|
||
|
ECCurve curve = this.Curve;
|
||
|
|
||
|
ECFieldElement Y1 = this.RawYCoord;
|
||
|
if (Y1.IsZero)
|
||
|
return curve.Infinity;
|
||
|
|
||
|
int coord = curve.CoordinateSystem;
|
||
|
|
||
|
ECFieldElement X1 = this.RawXCoord;
|
||
|
|
||
|
switch (coord)
|
||
|
{
|
||
|
case ECCurve.COORD_AFFINE:
|
||
|
{
|
||
|
ECFieldElement X1Squared = X1.Square();
|
||
|
ECFieldElement gamma = Three(X1Squared).Add(this.Curve.A).Divide(Two(Y1));
|
||
|
ECFieldElement X3 = gamma.Square().Subtract(Two(X1));
|
||
|
ECFieldElement Y3 = gamma.Multiply(X1.Subtract(X3)).Subtract(Y1);
|
||
|
|
||
|
return new FpPoint(Curve, X3, Y3, IsCompressed);
|
||
|
}
|
||
|
|
||
|
case ECCurve.COORD_HOMOGENEOUS:
|
||
|
{
|
||
|
ECFieldElement Z1 = this.RawZCoords[0];
|
||
|
|
||
|
bool Z1IsOne = Z1.IsOne;
|
||
|
|
||
|
// TODO Optimize for small negative a4 and -3
|
||
|
ECFieldElement w = curve.A;
|
||
|
if (!w.IsZero && !Z1IsOne)
|
||
|
{
|
||
|
w = w.Multiply(Z1.Square());
|
||
|
}
|
||
|
w = w.Add(Three(X1.Square()));
|
||
|
|
||
|
ECFieldElement s = Z1IsOne ? Y1 : Y1.Multiply(Z1);
|
||
|
ECFieldElement t = Z1IsOne ? Y1.Square() : s.Multiply(Y1);
|
||
|
ECFieldElement B = X1.Multiply(t);
|
||
|
ECFieldElement _4B = Four(B);
|
||
|
ECFieldElement h = w.Square().Subtract(Two(_4B));
|
||
|
|
||
|
ECFieldElement _2s = Two(s);
|
||
|
ECFieldElement X3 = h.Multiply(_2s);
|
||
|
ECFieldElement _2t = Two(t);
|
||
|
ECFieldElement Y3 = _4B.Subtract(h).Multiply(w).Subtract(Two(_2t.Square()));
|
||
|
ECFieldElement _4sSquared = Z1IsOne ? Two(_2t) : _2s.Square();
|
||
|
ECFieldElement Z3 = Two(_4sSquared).Multiply(s);
|
||
|
|
||
|
return new FpPoint(curve, X3, Y3, new ECFieldElement[] { Z3 }, IsCompressed);
|
||
|
}
|
||
|
|
||
|
case ECCurve.COORD_JACOBIAN:
|
||
|
{
|
||
|
ECFieldElement Z1 = this.RawZCoords[0];
|
||
|
|
||
|
bool Z1IsOne = Z1.IsOne;
|
||
|
|
||
|
ECFieldElement Y1Squared = Y1.Square();
|
||
|
ECFieldElement T = Y1Squared.Square();
|
||
|
|
||
|
ECFieldElement a4 = curve.A;
|
||
|
ECFieldElement a4Neg = a4.Negate();
|
||
|
|
||
|
ECFieldElement M, S;
|
||
|
if (a4Neg.ToBigInteger().Equals(BigInteger.ValueOf(3)))
|
||
|
{
|
||
|
ECFieldElement Z1Squared = Z1IsOne ? Z1 : Z1.Square();
|
||
|
M = Three(X1.Add(Z1Squared).Multiply(X1.Subtract(Z1Squared)));
|
||
|
S = Four(Y1Squared.Multiply(X1));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
ECFieldElement X1Squared = X1.Square();
|
||
|
M = Three(X1Squared);
|
||
|
if (Z1IsOne)
|
||
|
{
|
||
|
M = M.Add(a4);
|
||
|
}
|
||
|
else if (!a4.IsZero)
|
||
|
{
|
||
|
ECFieldElement Z1Squared = Z1IsOne ? Z1 : Z1.Square();
|
||
|
ECFieldElement Z1Pow4 = Z1Squared.Square();
|
||
|
if (a4Neg.BitLength < a4.BitLength)
|
||
|
{
|
||
|
M = M.Subtract(Z1Pow4.Multiply(a4Neg));
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
M = M.Add(Z1Pow4.Multiply(a4));
|
||
|
}
|
||
|
}
|
||
|
//S = two(doubleProductFromSquares(X1, Y1Squared, X1Squared, T));
|
||
|
S = Four(X1.Multiply(Y1Squared));
|
||
|
}
|
||
|
|
||
|
ECFieldElement X3 = M.Square().Subtract(Two(S));
|
||
|
ECFieldElement Y3 = S.Subtract(X3).Multiply(M).Subtract(Eight(T));
|
||
|
|
||
|
ECFieldElement Z3 = Two(Y1);
|
||
|
if (!Z1IsOne)
|
||
|
{
|
||
|
Z3 = Z3.Multiply(Z1);
|
||
|
}
|
||
|
|
||
|
// Alternative calculation of Z3 using fast square
|
||
|
//ECFieldElement Z3 = doubleProductFromSquares(Y1, Z1, Y1Squared, Z1Squared);
|
||
|
|
||
|
return new FpPoint(curve, X3, Y3, new ECFieldElement[] { Z3 }, IsCompressed);
|
||
|
}
|
||
|
|
||
|
case ECCurve.COORD_JACOBIAN_MODIFIED:
|
||
|
{
|
||
|
return TwiceJacobianModified(true);
|
||
|
}
|
||
|
|
||
|
default:
|
||
|
{
|
||
|
throw new InvalidOperationException("unsupported coordinate system");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public override ECPoint TwicePlus(ECPoint b)
|
||
|
{
|
||
|
if (this == b)
|
||
|
return ThreeTimes();
|
||
|
if (this.IsInfinity)
|
||
|
return b;
|
||
|
if (b.IsInfinity)
|
||
|
return Twice();
|
||
|
|
||
|
ECFieldElement Y1 = this.RawYCoord;
|
||
|
if (Y1.IsZero)
|
||
|
return b;
|
||
|
|
||
|
ECCurve curve = this.Curve;
|
||
|
int coord = curve.CoordinateSystem;
|
||
|
|
||
|
switch (coord)
|
||
|
{
|
||
|
case ECCurve.COORD_AFFINE:
|
||
|
{
|
||
|
ECFieldElement X1 = this.RawXCoord;
|
||
|
ECFieldElement X2 = b.RawXCoord, Y2 = b.RawYCoord;
|
||
|
|
||
|
ECFieldElement dx = X2.Subtract(X1), dy = Y2.Subtract(Y1);
|
||
|
|
||
|
if (dx.IsZero)
|
||
|
{
|
||
|
if (dy.IsZero)
|
||
|
{
|
||
|
// this == b i.e. the result is 3P
|
||
|
return ThreeTimes();
|
||
|
}
|
||
|
|
||
|
// this == -b, i.e. the result is P
|
||
|
return this;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Optimized calculation of 2P + Q, as described in "Trading Inversions for
|
||
|
* Multiplications in Elliptic Curve Cryptography", by Ciet, Joye, Lauter, Montgomery.
|
||
|
*/
|
||
|
|
||
|
ECFieldElement X = dx.Square(), Y = dy.Square();
|
||
|
ECFieldElement d = X.Multiply(Two(X1).Add(X2)).Subtract(Y);
|
||
|
if (d.IsZero)
|
||
|
{
|
||
|
return Curve.Infinity;
|
||
|
}
|
||
|
|
||
|
ECFieldElement D = d.Multiply(dx);
|
||
|
ECFieldElement I = D.Invert();
|
||
|
ECFieldElement L1 = d.Multiply(I).Multiply(dy);
|
||
|
ECFieldElement L2 = Two(Y1).Multiply(X).Multiply(dx).Multiply(I).Subtract(L1);
|
||
|
ECFieldElement X4 = (L2.Subtract(L1)).Multiply(L1.Add(L2)).Add(X2);
|
||
|
ECFieldElement Y4 = (X1.Subtract(X4)).Multiply(L2).Subtract(Y1);
|
||
|
|
||
|
return new FpPoint(Curve, X4, Y4, IsCompressed);
|
||
|
}
|
||
|
case ECCurve.COORD_JACOBIAN_MODIFIED:
|
||
|
{
|
||
|
return TwiceJacobianModified(false).Add(b);
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
return Twice().Add(b);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public override ECPoint ThreeTimes()
|
||
|
{
|
||
|
if (this.IsInfinity)
|
||
|
return this;
|
||
|
|
||
|
ECFieldElement Y1 = this.RawYCoord;
|
||
|
if (Y1.IsZero)
|
||
|
return this;
|
||
|
|
||
|
ECCurve curve = this.Curve;
|
||
|
int coord = curve.CoordinateSystem;
|
||
|
|
||
|
switch (coord)
|
||
|
{
|
||
|
case ECCurve.COORD_AFFINE:
|
||
|
{
|
||
|
ECFieldElement X1 = this.RawXCoord;
|
||
|
|
||
|
ECFieldElement _2Y1 = Two(Y1);
|
||
|
ECFieldElement X = _2Y1.Square();
|
||
|
ECFieldElement Z = Three(X1.Square()).Add(Curve.A);
|
||
|
ECFieldElement Y = Z.Square();
|
||
|
|
||
|
ECFieldElement d = Three(X1).Multiply(X).Subtract(Y);
|
||
|
if (d.IsZero)
|
||
|
{
|
||
|
return Curve.Infinity;
|
||
|
}
|
||
|
|
||
|
ECFieldElement D = d.Multiply(_2Y1);
|
||
|
ECFieldElement I = D.Invert();
|
||
|
ECFieldElement L1 = d.Multiply(I).Multiply(Z);
|
||
|
ECFieldElement L2 = X.Square().Multiply(I).Subtract(L1);
|
||
|
|
||
|
ECFieldElement X4 = (L2.Subtract(L1)).Multiply(L1.Add(L2)).Add(X1);
|
||
|
ECFieldElement Y4 = (X1.Subtract(X4)).Multiply(L2).Subtract(Y1);
|
||
|
return new FpPoint(Curve, X4, Y4, IsCompressed);
|
||
|
}
|
||
|
case ECCurve.COORD_JACOBIAN_MODIFIED:
|
||
|
{
|
||
|
return TwiceJacobianModified(false).Add(this);
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
// NOTE: Be careful about recursions between TwicePlus and ThreeTimes
|
||
|
return Twice().Add(this);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public override ECPoint TimesPow2(int e)
|
||
|
{
|
||
|
if (e < 0)
|
||
|
throw new ArgumentException("cannot be negative", "e");
|
||
|
if (e == 0 || this.IsInfinity)
|
||
|
return this;
|
||
|
if (e == 1)
|
||
|
return Twice();
|
||
|
|
||
|
ECCurve curve = this.Curve;
|
||
|
|
||
|
ECFieldElement Y1 = this.RawYCoord;
|
||
|
if (Y1.IsZero)
|
||
|
return curve.Infinity;
|
||
|
|
||
|
int coord = curve.CoordinateSystem;
|
||
|
|
||
|
ECFieldElement W1 = curve.A;
|
||
|
ECFieldElement X1 = this.RawXCoord;
|
||
|
ECFieldElement Z1 = this.RawZCoords.Length < 1 ? curve.FromBigInteger(BigInteger.One) : this.RawZCoords[0];
|
||
|
|
||
|
if (!Z1.IsOne)
|
||
|
{
|
||
|
switch (coord)
|
||
|
{
|
||
|
case ECCurve.COORD_HOMOGENEOUS:
|
||
|
ECFieldElement Z1Sq = Z1.Square();
|
||
|
X1 = X1.Multiply(Z1);
|
||
|
Y1 = Y1.Multiply(Z1Sq);
|
||
|
W1 = CalculateJacobianModifiedW(Z1, Z1Sq);
|
||
|
break;
|
||
|
case ECCurve.COORD_JACOBIAN:
|
||
|
W1 = CalculateJacobianModifiedW(Z1, null);
|
||
|
break;
|
||
|
case ECCurve.COORD_JACOBIAN_MODIFIED:
|
||
|
W1 = GetJacobianModifiedW();
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < e; ++i)
|
||
|
{
|
||
|
if (Y1.IsZero)
|
||
|
return curve.Infinity;
|
||
|
|
||
|
ECFieldElement X1Squared = X1.Square();
|
||
|
ECFieldElement M = Three(X1Squared);
|
||
|
ECFieldElement _2Y1 = Two(Y1);
|
||
|
ECFieldElement _2Y1Squared = _2Y1.Multiply(Y1);
|
||
|
ECFieldElement S = Two(X1.Multiply(_2Y1Squared));
|
||
|
ECFieldElement _4T = _2Y1Squared.Square();
|
||
|
ECFieldElement _8T = Two(_4T);
|
||
|
|
||
|
if (!W1.IsZero)
|
||
|
{
|
||
|
M = M.Add(W1);
|
||
|
W1 = Two(_8T.Multiply(W1));
|
||
|
}
|
||
|
|
||
|
X1 = M.Square().Subtract(Two(S));
|
||
|
Y1 = M.Multiply(S.Subtract(X1)).Subtract(_8T);
|
||
|
Z1 = Z1.IsOne ? _2Y1 : _2Y1.Multiply(Z1);
|
||
|
}
|
||
|
|
||
|
switch (coord)
|
||
|
{
|
||
|
case ECCurve.COORD_AFFINE:
|
||
|
ECFieldElement zInv = Z1.Invert(), zInv2 = zInv.Square(), zInv3 = zInv2.Multiply(zInv);
|
||
|
return new FpPoint(curve, X1.Multiply(zInv2), Y1.Multiply(zInv3), IsCompressed);
|
||
|
case ECCurve.COORD_HOMOGENEOUS:
|
||
|
X1 = X1.Multiply(Z1);
|
||
|
Z1 = Z1.Multiply(Z1.Square());
|
||
|
return new FpPoint(curve, X1, Y1, new ECFieldElement[] { Z1 }, IsCompressed);
|
||
|
case ECCurve.COORD_JACOBIAN:
|
||
|
return new FpPoint(curve, X1, Y1, new ECFieldElement[] { Z1 }, IsCompressed);
|
||
|
case ECCurve.COORD_JACOBIAN_MODIFIED:
|
||
|
return new FpPoint(curve, X1, Y1, new ECFieldElement[] { Z1, W1 }, IsCompressed);
|
||
|
default:
|
||
|
throw new InvalidOperationException("unsupported coordinate system");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
protected virtual ECFieldElement Two(ECFieldElement x)
|
||
|
{
|
||
|
return x.Add(x);
|
||
|
}
|
||
|
|
||
|
protected virtual ECFieldElement Three(ECFieldElement x)
|
||
|
{
|
||
|
return Two(x).Add(x);
|
||
|
}
|
||
|
|
||
|
protected virtual ECFieldElement Four(ECFieldElement x)
|
||
|
{
|
||
|
return Two(Two(x));
|
||
|
}
|
||
|
|
||
|
protected virtual ECFieldElement Eight(ECFieldElement x)
|
||
|
{
|
||
|
return Four(Two(x));
|
||
|
}
|
||
|
|
||
|
protected virtual ECFieldElement DoubleProductFromSquares(ECFieldElement a, ECFieldElement b,
|
||
|
ECFieldElement aSquared, ECFieldElement bSquared)
|
||
|
{
|
||
|
/*
|
||
|
* NOTE: If squaring in the field is faster than multiplication, then this is a quicker
|
||
|
* way to calculate 2.A.B, if A^2 and B^2 are already known.
|
||
|
*/
|
||
|
return a.Add(b).Square().Subtract(aSquared).Subtract(bSquared);
|
||
|
}
|
||
|
|
||
|
public override ECPoint Negate()
|
||
|
{
|
||
|
if (IsInfinity)
|
||
|
return this;
|
||
|
|
||
|
ECCurve curve = Curve;
|
||
|
int coord = curve.CoordinateSystem;
|
||
|
|
||
|
if (ECCurve.COORD_AFFINE != coord)
|
||
|
{
|
||
|
return new FpPoint(curve, RawXCoord, RawYCoord.Negate(), RawZCoords, IsCompressed);
|
||
|
}
|
||
|
|
||
|
return new FpPoint(curve, RawXCoord, RawYCoord.Negate(), IsCompressed);
|
||
|
}
|
||
|
|
||
|
protected virtual ECFieldElement CalculateJacobianModifiedW(ECFieldElement Z, ECFieldElement ZSquared)
|
||
|
{
|
||
|
ECFieldElement a4 = this.Curve.A;
|
||
|
if (a4.IsZero || Z.IsOne)
|
||
|
return a4;
|
||
|
|
||
|
if (ZSquared == null)
|
||
|
{
|
||
|
ZSquared = Z.Square();
|
||
|
}
|
||
|
|
||
|
ECFieldElement W = ZSquared.Square();
|
||
|
ECFieldElement a4Neg = a4.Negate();
|
||
|
if (a4Neg.BitLength < a4.BitLength)
|
||
|
{
|
||
|
W = W.Multiply(a4Neg).Negate();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
W = W.Multiply(a4);
|
||
|
}
|
||
|
return W;
|
||
|
}
|
||
|
|
||
|
protected virtual ECFieldElement GetJacobianModifiedW()
|
||
|
{
|
||
|
ECFieldElement[] ZZ = this.RawZCoords;
|
||
|
ECFieldElement W = ZZ[1];
|
||
|
if (W == null)
|
||
|
{
|
||
|
// NOTE: Rarely, TwicePlus will result in the need for a lazy W1 calculation here
|
||
|
ZZ[1] = W = CalculateJacobianModifiedW(ZZ[0], null);
|
||
|
}
|
||
|
return W;
|
||
|
}
|
||
|
|
||
|
protected virtual FpPoint TwiceJacobianModified(bool calculateW)
|
||
|
{
|
||
|
ECFieldElement X1 = this.RawXCoord, Y1 = this.RawYCoord, Z1 = this.RawZCoords[0], W1 = GetJacobianModifiedW();
|
||
|
|
||
|
ECFieldElement X1Squared = X1.Square();
|
||
|
ECFieldElement M = Three(X1Squared).Add(W1);
|
||
|
ECFieldElement _2Y1 = Two(Y1);
|
||
|
ECFieldElement _2Y1Squared = _2Y1.Multiply(Y1);
|
||
|
ECFieldElement S = Two(X1.Multiply(_2Y1Squared));
|
||
|
ECFieldElement X3 = M.Square().Subtract(Two(S));
|
||
|
ECFieldElement _4T = _2Y1Squared.Square();
|
||
|
ECFieldElement _8T = Two(_4T);
|
||
|
ECFieldElement Y3 = M.Multiply(S.Subtract(X3)).Subtract(_8T);
|
||
|
ECFieldElement W3 = calculateW ? Two(_8T.Multiply(W1)) : null;
|
||
|
ECFieldElement Z3 = Z1.IsOne ? _2Y1 : _2Y1.Multiply(Z1);
|
||
|
|
||
|
return new FpPoint(this.Curve, X3, Y3, new ECFieldElement[] { Z3, W3 }, IsCompressed);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public abstract class AbstractF2mPoint
|
||
|
: ECPointBase
|
||
|
{
|
||
|
protected AbstractF2mPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
|
||
|
: base(curve, x, y, withCompression)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
protected AbstractF2mPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
|
||
|
: base(curve, x, y, zs, withCompression)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
protected override bool SatisfiesCurveEquation()
|
||
|
{
|
||
|
ECCurve curve = Curve;
|
||
|
ECFieldElement X = this.RawXCoord, Y = this.RawYCoord, A = curve.A, B = curve.B;
|
||
|
ECFieldElement lhs, rhs;
|
||
|
|
||
|
int coord = curve.CoordinateSystem;
|
||
|
if (coord == ECCurve.COORD_LAMBDA_PROJECTIVE)
|
||
|
{
|
||
|
ECFieldElement Z = this.RawZCoords[0];
|
||
|
bool ZIsOne = Z.IsOne;
|
||
|
|
||
|
if (X.IsZero)
|
||
|
{
|
||
|
// NOTE: For x == 0, we expect the affine-y instead of the lambda-y
|
||
|
lhs = Y.Square();
|
||
|
rhs = B;
|
||
|
if (!ZIsOne)
|
||
|
{
|
||
|
ECFieldElement Z2 = Z.Square();
|
||
|
rhs = rhs.Multiply(Z2);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
ECFieldElement L = Y, X2 = X.Square();
|
||
|
if (ZIsOne)
|
||
|
{
|
||
|
lhs = L.Square().Add(L).Add(A);
|
||
|
rhs = X2.Square().Add(B);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
ECFieldElement Z2 = Z.Square(), Z4 = Z2.Square();
|
||
|
lhs = L.Add(Z).MultiplyPlusProduct(L, A, Z2);
|
||
|
// TODO If sqrt(b) is precomputed this can be simplified to a single square
|
||
|
rhs = X2.SquarePlusProduct(B, Z4);
|
||
|
}
|
||
|
lhs = lhs.Multiply(X2);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
lhs = Y.Add(X).Multiply(Y);
|
||
|
|
||
|
switch (coord)
|
||
|
{
|
||
|
case ECCurve.COORD_AFFINE:
|
||
|
break;
|
||
|
case ECCurve.COORD_HOMOGENEOUS:
|
||
|
{
|
||
|
ECFieldElement Z = this.RawZCoords[0];
|
||
|
if (!Z.IsOne)
|
||
|
{
|
||
|
ECFieldElement Z2 = Z.Square(), Z3 = Z.Multiply(Z2);
|
||
|
lhs = lhs.Multiply(Z);
|
||
|
A = A.Multiply(Z);
|
||
|
B = B.Multiply(Z3);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
throw new InvalidOperationException("unsupported coordinate system");
|
||
|
}
|
||
|
|
||
|
rhs = X.Add(A).Multiply(X.Square()).Add(B);
|
||
|
}
|
||
|
|
||
|
return lhs.Equals(rhs);
|
||
|
}
|
||
|
|
||
|
protected override bool SatisfiesOrder()
|
||
|
{
|
||
|
ECCurve curve = Curve;
|
||
|
BigInteger cofactor = curve.Cofactor;
|
||
|
if (BigInteger.Two.Equals(cofactor))
|
||
|
{
|
||
|
/*
|
||
|
* Check that 0 == Tr(X + A); then there exists a solution to L^2 + L = X + A, and
|
||
|
* so a halving is possible, so this point is the double of another.
|
||
|
*
|
||
|
* Note: Tr(A) == 1 for cofactor 2 curves.
|
||
|
*/
|
||
|
ECPoint N = this.Normalize();
|
||
|
ECFieldElement X = N.AffineXCoord;
|
||
|
return 0 != ((AbstractF2mFieldElement)X).Trace();
|
||
|
}
|
||
|
if (BigInteger.ValueOf(4).Equals(cofactor))
|
||
|
{
|
||
|
/*
|
||
|
* Solve L^2 + L = X + A to find the half of this point, if it exists (fail if not).
|
||
|
*
|
||
|
* Note: Tr(A) == 0 for cofactor 4 curves.
|
||
|
*/
|
||
|
ECPoint N = this.Normalize();
|
||
|
ECFieldElement X = N.AffineXCoord;
|
||
|
ECFieldElement L = ((AbstractF2mCurve)curve).SolveQuadraticEquation(X.Add(curve.A));
|
||
|
if (null == L)
|
||
|
return false;
|
||
|
|
||
|
/*
|
||
|
* A solution exists, therefore 0 == Tr(X + A) == Tr(X).
|
||
|
*/
|
||
|
ECFieldElement Y = N.AffineYCoord;
|
||
|
ECFieldElement T = X.Multiply(L).Add(Y);
|
||
|
|
||
|
/*
|
||
|
* Either T or (T + X) is the square of a half-point's x coordinate (hx). In either
|
||
|
* case, the half-point can be halved again when 0 == Tr(hx + A).
|
||
|
*
|
||
|
* Note: Tr(hx + A) == Tr(hx) == Tr(hx^2) == Tr(T) == Tr(T + X)
|
||
|
*
|
||
|
* Check that 0 == Tr(T); then there exists a solution to L^2 + L = hx + A, and so a
|
||
|
* second halving is possible and this point is four times some other.
|
||
|
*/
|
||
|
return 0 == ((AbstractF2mFieldElement)T).Trace();
|
||
|
}
|
||
|
|
||
|
return base.SatisfiesOrder();
|
||
|
}
|
||
|
|
||
|
public override ECPoint ScaleX(ECFieldElement scale)
|
||
|
{
|
||
|
if (this.IsInfinity)
|
||
|
return this;
|
||
|
|
||
|
switch (CurveCoordinateSystem)
|
||
|
{
|
||
|
case ECCurve.COORD_LAMBDA_AFFINE:
|
||
|
{
|
||
|
// Y is actually Lambda (X + Y/X) here
|
||
|
ECFieldElement X = RawXCoord, L = RawYCoord;
|
||
|
|
||
|
ECFieldElement X2 = X.Multiply(scale);
|
||
|
ECFieldElement L2 = L.Add(X).Divide(scale).Add(X2);
|
||
|
|
||
|
return Curve.CreateRawPoint(X, L2, RawZCoords, IsCompressed);
|
||
|
}
|
||
|
case ECCurve.COORD_LAMBDA_PROJECTIVE:
|
||
|
{
|
||
|
// Y is actually Lambda (X + Y/X) here
|
||
|
ECFieldElement X = RawXCoord, L = RawYCoord, Z = RawZCoords[0];
|
||
|
|
||
|
// We scale the Z coordinate also, to avoid an inversion
|
||
|
ECFieldElement X2 = X.Multiply(scale.Square());
|
||
|
ECFieldElement L2 = L.Add(X).Add(X2);
|
||
|
ECFieldElement Z2 = Z.Multiply(scale);
|
||
|
|
||
|
return Curve.CreateRawPoint(X, L2, new ECFieldElement[] { Z2 }, IsCompressed);
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
return base.ScaleX(scale);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public override ECPoint ScaleXNegateY(ECFieldElement scale)
|
||
|
{
|
||
|
return ScaleX(scale);
|
||
|
}
|
||
|
|
||
|
public override ECPoint ScaleY(ECFieldElement scale)
|
||
|
{
|
||
|
if (this.IsInfinity)
|
||
|
return this;
|
||
|
|
||
|
switch (CurveCoordinateSystem)
|
||
|
{
|
||
|
case ECCurve.COORD_LAMBDA_AFFINE:
|
||
|
case ECCurve.COORD_LAMBDA_PROJECTIVE:
|
||
|
{
|
||
|
ECFieldElement X = RawXCoord, L = RawYCoord;
|
||
|
|
||
|
// Y is actually Lambda (X + Y/X) here
|
||
|
ECFieldElement L2 = L.Add(X).Multiply(scale).Add(X);
|
||
|
|
||
|
return Curve.CreateRawPoint(X, L2, RawZCoords, IsCompressed);
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
return base.ScaleY(scale);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public override ECPoint ScaleYNegateX(ECFieldElement scale)
|
||
|
{
|
||
|
return ScaleY(scale);
|
||
|
}
|
||
|
|
||
|
public override ECPoint Subtract(ECPoint b)
|
||
|
{
|
||
|
if (b.IsInfinity)
|
||
|
return this;
|
||
|
|
||
|
// Add -b
|
||
|
return Add(b.Negate());
|
||
|
}
|
||
|
|
||
|
public virtual AbstractF2mPoint Tau()
|
||
|
{
|
||
|
if (this.IsInfinity)
|
||
|
return this;
|
||
|
|
||
|
ECCurve curve = this.Curve;
|
||
|
int coord = curve.CoordinateSystem;
|
||
|
|
||
|
ECFieldElement X1 = this.RawXCoord;
|
||
|
|
||
|
switch (coord)
|
||
|
{
|
||
|
case ECCurve.COORD_AFFINE:
|
||
|
case ECCurve.COORD_LAMBDA_AFFINE:
|
||
|
{
|
||
|
ECFieldElement Y1 = this.RawYCoord;
|
||
|
return (AbstractF2mPoint)curve.CreateRawPoint(X1.Square(), Y1.Square(), IsCompressed);
|
||
|
}
|
||
|
case ECCurve.COORD_HOMOGENEOUS:
|
||
|
case ECCurve.COORD_LAMBDA_PROJECTIVE:
|
||
|
{
|
||
|
ECFieldElement Y1 = this.RawYCoord, Z1 = this.RawZCoords[0];
|
||
|
return (AbstractF2mPoint)curve.CreateRawPoint(X1.Square(), Y1.Square(),
|
||
|
new ECFieldElement[] { Z1.Square() }, IsCompressed);
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
throw new InvalidOperationException("unsupported coordinate system");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public virtual AbstractF2mPoint TauPow(int pow)
|
||
|
{
|
||
|
if (this.IsInfinity)
|
||
|
return this;
|
||
|
|
||
|
ECCurve curve = this.Curve;
|
||
|
int coord = curve.CoordinateSystem;
|
||
|
|
||
|
ECFieldElement X1 = this.RawXCoord;
|
||
|
|
||
|
switch (coord)
|
||
|
{
|
||
|
case ECCurve.COORD_AFFINE:
|
||
|
case ECCurve.COORD_LAMBDA_AFFINE:
|
||
|
{
|
||
|
ECFieldElement Y1 = this.RawYCoord;
|
||
|
return (AbstractF2mPoint)curve.CreateRawPoint(X1.SquarePow(pow), Y1.SquarePow(pow), IsCompressed);
|
||
|
}
|
||
|
case ECCurve.COORD_HOMOGENEOUS:
|
||
|
case ECCurve.COORD_LAMBDA_PROJECTIVE:
|
||
|
{
|
||
|
ECFieldElement Y1 = this.RawYCoord, Z1 = this.RawZCoords[0];
|
||
|
return (AbstractF2mPoint)curve.CreateRawPoint(X1.SquarePow(pow), Y1.SquarePow(pow),
|
||
|
new ECFieldElement[] { Z1.SquarePow(pow) }, IsCompressed);
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
throw new InvalidOperationException("unsupported coordinate system");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Elliptic curve points over F2m
|
||
|
*/
|
||
|
public class F2mPoint
|
||
|
: AbstractF2mPoint
|
||
|
{
|
||
|
/**
|
||
|
* @param curve base curve
|
||
|
* @param x x point
|
||
|
* @param y y point
|
||
|
*/
|
||
|
|
||
|
public F2mPoint(
|
||
|
ECCurve curve,
|
||
|
ECFieldElement x,
|
||
|
ECFieldElement y)
|
||
|
: this(curve, x, y, false)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @param curve base curve
|
||
|
* @param x x point
|
||
|
* @param y y point
|
||
|
* @param withCompression true if encode with point compression.
|
||
|
*/
|
||
|
|
||
|
public F2mPoint(
|
||
|
ECCurve curve,
|
||
|
ECFieldElement x,
|
||
|
ECFieldElement y,
|
||
|
bool withCompression)
|
||
|
: base(curve, x, y, withCompression)
|
||
|
{
|
||
|
if ((x == null) != (y == null))
|
||
|
{
|
||
|
throw new ArgumentException("Exactly one of the field elements is null");
|
||
|
}
|
||
|
|
||
|
if (x != null)
|
||
|
{
|
||
|
// Check if x and y are elements of the same field
|
||
|
F2mFieldElement.CheckFieldElements(x, y);
|
||
|
|
||
|
// Check if x and a are elements of the same field
|
||
|
if (curve != null)
|
||
|
{
|
||
|
F2mFieldElement.CheckFieldElements(x, curve.A);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
internal F2mPoint(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
|
||
|
: base(curve, x, y, zs, withCompression)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
protected override ECPoint Detach()
|
||
|
{
|
||
|
return new F2mPoint(null, AffineXCoord, AffineYCoord, false);
|
||
|
}
|
||
|
|
||
|
public override ECFieldElement YCoord
|
||
|
{
|
||
|
get
|
||
|
{
|
||
|
int coord = this.CurveCoordinateSystem;
|
||
|
|
||
|
switch (coord)
|
||
|
{
|
||
|
case ECCurve.COORD_LAMBDA_AFFINE:
|
||
|
case ECCurve.COORD_LAMBDA_PROJECTIVE:
|
||
|
{
|
||
|
ECFieldElement X = RawXCoord, L = RawYCoord;
|
||
|
|
||
|
if (this.IsInfinity || X.IsZero)
|
||
|
return L;
|
||
|
|
||
|
// Y is actually Lambda (X + Y/X) here; convert to affine value on the fly
|
||
|
ECFieldElement Y = L.Add(X).Multiply(X);
|
||
|
if (ECCurve.COORD_LAMBDA_PROJECTIVE == coord)
|
||
|
{
|
||
|
ECFieldElement Z = RawZCoords[0];
|
||
|
if (!Z.IsOne)
|
||
|
{
|
||
|
Y = Y.Divide(Z);
|
||
|
}
|
||
|
}
|
||
|
return Y;
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
return RawYCoord;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
protected internal override bool CompressionYTilde
|
||
|
{
|
||
|
get
|
||
|
{
|
||
|
ECFieldElement X = this.RawXCoord;
|
||
|
if (X.IsZero)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
ECFieldElement Y = this.RawYCoord;
|
||
|
|
||
|
switch (this.CurveCoordinateSystem)
|
||
|
{
|
||
|
case ECCurve.COORD_LAMBDA_AFFINE:
|
||
|
case ECCurve.COORD_LAMBDA_PROJECTIVE:
|
||
|
{
|
||
|
// Y is actually Lambda (X + Y/X) here
|
||
|
return Y.TestBitZero() != X.TestBitZero();
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
return Y.Divide(X).TestBitZero();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public override ECPoint Add(ECPoint b)
|
||
|
{
|
||
|
if (this.IsInfinity)
|
||
|
return b;
|
||
|
if (b.IsInfinity)
|
||
|
return this;
|
||
|
|
||
|
ECCurve curve = this.Curve;
|
||
|
int coord = curve.CoordinateSystem;
|
||
|
|
||
|
ECFieldElement X1 = this.RawXCoord;
|
||
|
ECFieldElement X2 = b.RawXCoord;
|
||
|
|
||
|
switch (coord)
|
||
|
{
|
||
|
case ECCurve.COORD_AFFINE:
|
||
|
{
|
||
|
ECFieldElement Y1 = this.RawYCoord;
|
||
|
ECFieldElement Y2 = b.RawYCoord;
|
||
|
|
||
|
ECFieldElement dx = X1.Add(X2), dy = Y1.Add(Y2);
|
||
|
if (dx.IsZero)
|
||
|
{
|
||
|
if (dy.IsZero)
|
||
|
{
|
||
|
return Twice();
|
||
|
}
|
||
|
|
||
|
return curve.Infinity;
|
||
|
}
|
||
|
|
||
|
ECFieldElement L = dy.Divide(dx);
|
||
|
|
||
|
ECFieldElement X3 = L.Square().Add(L).Add(dx).Add(curve.A);
|
||
|
ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
|
||
|
|
||
|
return new F2mPoint(curve, X3, Y3, IsCompressed);
|
||
|
}
|
||
|
case ECCurve.COORD_HOMOGENEOUS:
|
||
|
{
|
||
|
ECFieldElement Y1 = this.RawYCoord, Z1 = this.RawZCoords[0];
|
||
|
ECFieldElement Y2 = b.RawYCoord, Z2 = b.RawZCoords[0];
|
||
|
|
||
|
bool Z1IsOne = Z1.IsOne;
|
||
|
ECFieldElement U1 = Y2, V1 = X2;
|
||
|
if (!Z1IsOne)
|
||
|
{
|
||
|
U1 = U1.Multiply(Z1);
|
||
|
V1 = V1.Multiply(Z1);
|
||
|
}
|
||
|
|
||
|
bool Z2IsOne = Z2.IsOne;
|
||
|
ECFieldElement U2 = Y1, V2 = X1;
|
||
|
if (!Z2IsOne)
|
||
|
{
|
||
|
U2 = U2.Multiply(Z2);
|
||
|
V2 = V2.Multiply(Z2);
|
||
|
}
|
||
|
|
||
|
ECFieldElement U = U1.Add(U2);
|
||
|
ECFieldElement V = V1.Add(V2);
|
||
|
|
||
|
if (V.IsZero)
|
||
|
{
|
||
|
if (U.IsZero)
|
||
|
{
|
||
|
return Twice();
|
||
|
}
|
||
|
|
||
|
return curve.Infinity;
|
||
|
}
|
||
|
|
||
|
ECFieldElement VSq = V.Square();
|
||
|
ECFieldElement VCu = VSq.Multiply(V);
|
||
|
ECFieldElement W = Z1IsOne ? Z2 : Z2IsOne ? Z1 : Z1.Multiply(Z2);
|
||
|
ECFieldElement uv = U.Add(V);
|
||
|
ECFieldElement A = uv.MultiplyPlusProduct(U, VSq, curve.A).Multiply(W).Add(VCu);
|
||
|
|
||
|
ECFieldElement X3 = V.Multiply(A);
|
||
|
ECFieldElement VSqZ2 = Z2IsOne ? VSq : VSq.Multiply(Z2);
|
||
|
ECFieldElement Y3 = U.MultiplyPlusProduct(X1, V, Y1).MultiplyPlusProduct(VSqZ2, uv, A);
|
||
|
ECFieldElement Z3 = VCu.Multiply(W);
|
||
|
|
||
|
return new F2mPoint(curve, X3, Y3, new ECFieldElement[] { Z3 }, IsCompressed);
|
||
|
}
|
||
|
case ECCurve.COORD_LAMBDA_PROJECTIVE:
|
||
|
{
|
||
|
if (X1.IsZero)
|
||
|
{
|
||
|
if (X2.IsZero)
|
||
|
return curve.Infinity;
|
||
|
|
||
|
return b.Add(this);
|
||
|
}
|
||
|
|
||
|
ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
|
||
|
ECFieldElement L2 = b.RawYCoord, Z2 = b.RawZCoords[0];
|
||
|
|
||
|
bool Z1IsOne = Z1.IsOne;
|
||
|
ECFieldElement U2 = X2, S2 = L2;
|
||
|
if (!Z1IsOne)
|
||
|
{
|
||
|
U2 = U2.Multiply(Z1);
|
||
|
S2 = S2.Multiply(Z1);
|
||
|
}
|
||
|
|
||
|
bool Z2IsOne = Z2.IsOne;
|
||
|
ECFieldElement U1 = X1, S1 = L1;
|
||
|
if (!Z2IsOne)
|
||
|
{
|
||
|
U1 = U1.Multiply(Z2);
|
||
|
S1 = S1.Multiply(Z2);
|
||
|
}
|
||
|
|
||
|
ECFieldElement A = S1.Add(S2);
|
||
|
ECFieldElement B = U1.Add(U2);
|
||
|
|
||
|
if (B.IsZero)
|
||
|
{
|
||
|
if (A.IsZero)
|
||
|
{
|
||
|
return Twice();
|
||
|
}
|
||
|
|
||
|
return curve.Infinity;
|
||
|
}
|
||
|
|
||
|
ECFieldElement X3, L3, Z3;
|
||
|
if (X2.IsZero)
|
||
|
{
|
||
|
// TODO This can probably be optimized quite a bit
|
||
|
ECPoint p = this.Normalize();
|
||
|
X1 = p.RawXCoord;
|
||
|
ECFieldElement Y1 = p.YCoord;
|
||
|
|
||
|
ECFieldElement Y2 = L2;
|
||
|
ECFieldElement L = Y1.Add(Y2).Divide(X1);
|
||
|
|
||
|
X3 = L.Square().Add(L).Add(X1).Add(curve.A);
|
||
|
if (X3.IsZero)
|
||
|
{
|
||
|
return new F2mPoint(curve, X3, curve.B.Sqrt(), IsCompressed);
|
||
|
}
|
||
|
|
||
|
ECFieldElement Y3 = L.Multiply(X1.Add(X3)).Add(X3).Add(Y1);
|
||
|
L3 = Y3.Divide(X3).Add(X3);
|
||
|
Z3 = curve.FromBigInteger(BigInteger.One);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
B = B.Square();
|
||
|
|
||
|
ECFieldElement AU1 = A.Multiply(U1);
|
||
|
ECFieldElement AU2 = A.Multiply(U2);
|
||
|
|
||
|
X3 = AU1.Multiply(AU2);
|
||
|
if (X3.IsZero)
|
||
|
{
|
||
|
return new F2mPoint(curve, X3, curve.B.Sqrt(), IsCompressed);
|
||
|
}
|
||
|
|
||
|
ECFieldElement ABZ2 = A.Multiply(B);
|
||
|
if (!Z2IsOne)
|
||
|
{
|
||
|
ABZ2 = ABZ2.Multiply(Z2);
|
||
|
}
|
||
|
|
||
|
L3 = AU2.Add(B).SquarePlusProduct(ABZ2, L1.Add(Z1));
|
||
|
|
||
|
Z3 = ABZ2;
|
||
|
if (!Z1IsOne)
|
||
|
{
|
||
|
Z3 = Z3.Multiply(Z1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return new F2mPoint(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
throw new InvalidOperationException("unsupported coordinate system");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* (non-Javadoc)
|
||
|
* @see BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC.ECPoint#twice()
|
||
|
*/
|
||
|
public override ECPoint Twice()
|
||
|
{
|
||
|
if (this.IsInfinity)
|
||
|
return this;
|
||
|
|
||
|
ECCurve curve = this.Curve;
|
||
|
|
||
|
ECFieldElement X1 = this.RawXCoord;
|
||
|
if (X1.IsZero)
|
||
|
{
|
||
|
// A point with X == 0 is its own additive inverse
|
||
|
return curve.Infinity;
|
||
|
}
|
||
|
|
||
|
int coord = curve.CoordinateSystem;
|
||
|
|
||
|
switch (coord)
|
||
|
{
|
||
|
case ECCurve.COORD_AFFINE:
|
||
|
{
|
||
|
ECFieldElement Y1 = this.RawYCoord;
|
||
|
|
||
|
ECFieldElement L1 = Y1.Divide(X1).Add(X1);
|
||
|
|
||
|
ECFieldElement X3 = L1.Square().Add(L1).Add(curve.A);
|
||
|
ECFieldElement Y3 = X1.SquarePlusProduct(X3, L1.AddOne());
|
||
|
|
||
|
return new F2mPoint(curve, X3, Y3, IsCompressed);
|
||
|
}
|
||
|
case ECCurve.COORD_HOMOGENEOUS:
|
||
|
{
|
||
|
ECFieldElement Y1 = this.RawYCoord, Z1 = this.RawZCoords[0];
|
||
|
|
||
|
bool Z1IsOne = Z1.IsOne;
|
||
|
ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1);
|
||
|
ECFieldElement Y1Z1 = Z1IsOne ? Y1 : Y1.Multiply(Z1);
|
||
|
|
||
|
ECFieldElement X1Sq = X1.Square();
|
||
|
ECFieldElement S = X1Sq.Add(Y1Z1);
|
||
|
ECFieldElement V = X1Z1;
|
||
|
ECFieldElement vSquared = V.Square();
|
||
|
ECFieldElement sv = S.Add(V);
|
||
|
ECFieldElement h = sv.MultiplyPlusProduct(S, vSquared, curve.A);
|
||
|
|
||
|
ECFieldElement X3 = V.Multiply(h);
|
||
|
ECFieldElement Y3 = X1Sq.Square().MultiplyPlusProduct(V, h, sv);
|
||
|
ECFieldElement Z3 = V.Multiply(vSquared);
|
||
|
|
||
|
return new F2mPoint(curve, X3, Y3, new ECFieldElement[] { Z3 }, IsCompressed);
|
||
|
}
|
||
|
case ECCurve.COORD_LAMBDA_PROJECTIVE:
|
||
|
{
|
||
|
ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
|
||
|
|
||
|
bool Z1IsOne = Z1.IsOne;
|
||
|
ECFieldElement L1Z1 = Z1IsOne ? L1 : L1.Multiply(Z1);
|
||
|
ECFieldElement Z1Sq = Z1IsOne ? Z1 : Z1.Square();
|
||
|
ECFieldElement a = curve.A;
|
||
|
ECFieldElement aZ1Sq = Z1IsOne ? a : a.Multiply(Z1Sq);
|
||
|
ECFieldElement T = L1.Square().Add(L1Z1).Add(aZ1Sq);
|
||
|
if (T.IsZero)
|
||
|
{
|
||
|
return new F2mPoint(curve, T, curve.B.Sqrt(), IsCompressed);
|
||
|
}
|
||
|
|
||
|
ECFieldElement X3 = T.Square();
|
||
|
ECFieldElement Z3 = Z1IsOne ? T : T.Multiply(Z1Sq);
|
||
|
|
||
|
ECFieldElement b = curve.B;
|
||
|
ECFieldElement L3;
|
||
|
if (b.BitLength < (curve.FieldSize >> 1))
|
||
|
{
|
||
|
ECFieldElement t1 = L1.Add(X1).Square();
|
||
|
ECFieldElement t2;
|
||
|
if (b.IsOne)
|
||
|
{
|
||
|
t2 = aZ1Sq.Add(Z1Sq).Square();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// TODO Can be calculated with one square if we pre-compute sqrt(b)
|
||
|
t2 = aZ1Sq.SquarePlusProduct(b, Z1Sq.Square());
|
||
|
}
|
||
|
L3 = t1.Add(T).Add(Z1Sq).Multiply(t1).Add(t2).Add(X3);
|
||
|
if (a.IsZero)
|
||
|
{
|
||
|
L3 = L3.Add(Z3);
|
||
|
}
|
||
|
else if (!a.IsOne)
|
||
|
{
|
||
|
L3 = L3.Add(a.AddOne().Multiply(Z3));
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
ECFieldElement X1Z1 = Z1IsOne ? X1 : X1.Multiply(Z1);
|
||
|
L3 = X1Z1.SquarePlusProduct(T, L1Z1).Add(X3).Add(Z3);
|
||
|
}
|
||
|
|
||
|
return new F2mPoint(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
throw new InvalidOperationException("unsupported coordinate system");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public override ECPoint TwicePlus(ECPoint b)
|
||
|
{
|
||
|
if (this.IsInfinity)
|
||
|
return b;
|
||
|
if (b.IsInfinity)
|
||
|
return Twice();
|
||
|
|
||
|
ECCurve curve = this.Curve;
|
||
|
|
||
|
ECFieldElement X1 = this.RawXCoord;
|
||
|
if (X1.IsZero)
|
||
|
{
|
||
|
// A point with X == 0 is its own additive inverse
|
||
|
return b;
|
||
|
}
|
||
|
|
||
|
int coord = curve.CoordinateSystem;
|
||
|
|
||
|
switch (coord)
|
||
|
{
|
||
|
case ECCurve.COORD_LAMBDA_PROJECTIVE:
|
||
|
{
|
||
|
// NOTE: twicePlus() only optimized for lambda-affine argument
|
||
|
ECFieldElement X2 = b.RawXCoord, Z2 = b.RawZCoords[0];
|
||
|
if (X2.IsZero || !Z2.IsOne)
|
||
|
{
|
||
|
return Twice().Add(b);
|
||
|
}
|
||
|
|
||
|
ECFieldElement L1 = this.RawYCoord, Z1 = this.RawZCoords[0];
|
||
|
ECFieldElement L2 = b.RawYCoord;
|
||
|
|
||
|
ECFieldElement X1Sq = X1.Square();
|
||
|
ECFieldElement L1Sq = L1.Square();
|
||
|
ECFieldElement Z1Sq = Z1.Square();
|
||
|
ECFieldElement L1Z1 = L1.Multiply(Z1);
|
||
|
|
||
|
ECFieldElement T = curve.A.Multiply(Z1Sq).Add(L1Sq).Add(L1Z1);
|
||
|
ECFieldElement L2plus1 = L2.AddOne();
|
||
|
ECFieldElement A = curve.A.Add(L2plus1).Multiply(Z1Sq).Add(L1Sq).MultiplyPlusProduct(T, X1Sq, Z1Sq);
|
||
|
ECFieldElement X2Z1Sq = X2.Multiply(Z1Sq);
|
||
|
ECFieldElement B = X2Z1Sq.Add(T).Square();
|
||
|
|
||
|
if (B.IsZero)
|
||
|
{
|
||
|
if (A.IsZero)
|
||
|
{
|
||
|
return b.Twice();
|
||
|
}
|
||
|
|
||
|
return curve.Infinity;
|
||
|
}
|
||
|
|
||
|
if (A.IsZero)
|
||
|
{
|
||
|
return new F2mPoint(curve, A, curve.B.Sqrt(), IsCompressed);
|
||
|
}
|
||
|
|
||
|
ECFieldElement X3 = A.Square().Multiply(X2Z1Sq);
|
||
|
ECFieldElement Z3 = A.Multiply(B).Multiply(Z1Sq);
|
||
|
ECFieldElement L3 = A.Add(B).Square().MultiplyPlusProduct(T, L2plus1, Z3);
|
||
|
|
||
|
return new F2mPoint(curve, X3, L3, new ECFieldElement[] { Z3 }, IsCompressed);
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
return Twice().Add(b);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public override ECPoint Negate()
|
||
|
{
|
||
|
if (this.IsInfinity)
|
||
|
return this;
|
||
|
|
||
|
ECFieldElement X = this.RawXCoord;
|
||
|
if (X.IsZero)
|
||
|
return this;
|
||
|
|
||
|
ECCurve curve = this.Curve;
|
||
|
int coord = curve.CoordinateSystem;
|
||
|
|
||
|
switch (coord)
|
||
|
{
|
||
|
case ECCurve.COORD_AFFINE:
|
||
|
{
|
||
|
ECFieldElement Y = this.RawYCoord;
|
||
|
return new F2mPoint(curve, X, Y.Add(X), IsCompressed);
|
||
|
}
|
||
|
case ECCurve.COORD_HOMOGENEOUS:
|
||
|
{
|
||
|
ECFieldElement Y = this.RawYCoord, Z = this.RawZCoords[0];
|
||
|
return new F2mPoint(curve, X, Y.Add(X), new ECFieldElement[] { Z }, IsCompressed);
|
||
|
}
|
||
|
case ECCurve.COORD_LAMBDA_AFFINE:
|
||
|
{
|
||
|
ECFieldElement L = this.RawYCoord;
|
||
|
return new F2mPoint(curve, X, L.AddOne(), IsCompressed);
|
||
|
}
|
||
|
case ECCurve.COORD_LAMBDA_PROJECTIVE:
|
||
|
{
|
||
|
// L is actually Lambda (X + Y/X) here
|
||
|
ECFieldElement L = this.RawYCoord, Z = this.RawZCoords[0];
|
||
|
return new F2mPoint(curve, X, L.Add(Z), new ECFieldElement[] { Z }, IsCompressed);
|
||
|
}
|
||
|
default:
|
||
|
{
|
||
|
throw new InvalidOperationException("unsupported coordinate system");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#pragma warning restore
|
||
|
#endif
|