#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR) #pragma warning disable using System; using System.Diagnostics; using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters; using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Utilities; using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities; namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Engines { /** * an implementation of the AES (Rijndael), from FIPS-197. *

* For further details see: http://csrc.nist.gov/encryption/aes/. * * This implementation is based on optimizations from Dr. Brian Gladman's paper and C code at * http://fp.gladman.plus.com/cryptography_technology/rijndael/ * * There are three levels of tradeoff of speed vs memory * Because java has no preprocessor, they are written as three separate classes from which to choose * * The fastest uses 8Kbytes of static tables to precompute round calculations, 4 256 word tables for encryption * and 4 for decryption. * * The middle performance version uses only one 256 word table for each, for a total of 2Kbytes, * adding 12 rotate operations per round to compute the values contained in the other tables from * the contents of the first * * The slowest version uses no static tables at all and computes the values * in each round. *

*

* This file contains the slowest performance version with no static tables * for round precomputation, but it has the smallest foot print. *

*/ public class AesLightEngine : IBlockCipher { // The S box private static readonly byte[] S = { 99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 118, 202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192, 183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, 216, 49, 21, 4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, 235, 39, 178, 117, 9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, 179, 41, 227, 47, 132, 83, 209, 0, 237, 32, 252, 177, 91, 106, 203, 190, 57, 74, 76, 88, 207, 208, 239, 170, 251, 67, 77, 51, 133, 69, 249, 2, 127, 80, 60, 159, 168, 81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243, 210, 205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115, 96, 129, 79, 220, 34, 42, 144, 136, 70, 238, 184, 20, 222, 94, 11, 219, 224, 50, 58, 10, 73, 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121, 231, 200, 55, 109, 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8, 186, 120, 37, 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138, 112, 62, 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158, 225, 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223, 140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, 22, }; // The inverse S-box private static readonly byte[] Si = { 82, 9, 106, 213, 48, 54, 165, 56, 191, 64, 163, 158, 129, 243, 215, 251, 124, 227, 57, 130, 155, 47, 255, 135, 52, 142, 67, 68, 196, 222, 233, 203, 84, 123, 148, 50, 166, 194, 35, 61, 238, 76, 149, 11, 66, 250, 195, 78, 8, 46, 161, 102, 40, 217, 36, 178, 118, 91, 162, 73, 109, 139, 209, 37, 114, 248, 246, 100, 134, 104, 152, 22, 212, 164, 92, 204, 93, 101, 182, 146, 108, 112, 72, 80, 253, 237, 185, 218, 94, 21, 70, 87, 167, 141, 157, 132, 144, 216, 171, 0, 140, 188, 211, 10, 247, 228, 88, 5, 184, 179, 69, 6, 208, 44, 30, 143, 202, 63, 15, 2, 193, 175, 189, 3, 1, 19, 138, 107, 58, 145, 17, 65, 79, 103, 220, 234, 151, 242, 207, 206, 240, 180, 230, 115, 150, 172, 116, 34, 231, 173, 53, 133, 226, 249, 55, 232, 28, 117, 223, 110, 71, 241, 26, 113, 29, 41, 197, 137, 111, 183, 98, 14, 170, 24, 190, 27, 252, 86, 62, 75, 198, 210, 121, 32, 154, 219, 192, 254, 120, 205, 90, 244, 31, 221, 168, 51, 136, 7, 199, 49, 177, 18, 16, 89, 39, 128, 236, 95, 96, 81, 127, 169, 25, 181, 74, 13, 45, 229, 122, 159, 147, 201, 156, 239, 160, 224, 59, 77, 174, 42, 245, 176, 200, 235, 187, 60, 131, 83, 153, 97, 23, 43, 4, 126, 186, 119, 214, 38, 225, 105, 20, 99, 85, 33, 12, 125, }; // vector used in calculating key schedule (powers of x in GF(256)) private static readonly byte[] rcon = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91 }; private static uint Shift(uint r, int shift) { return (r >> shift) | (r << (32 - shift)); } /* multiply four bytes in GF(2^8) by 'x' {02} in parallel */ private const uint m1 = 0x80808080; private const uint m2 = 0x7f7f7f7f; private const uint m3 = 0x0000001b; private const uint m4 = 0xC0C0C0C0; private const uint m5 = 0x3f3f3f3f; private static uint FFmulX(uint x) { return ((x & m2) << 1) ^ (((x & m1) >> 7) * m3); } private static uint FFmulX2(uint x) { uint t0 = (x & m5) << 2; uint t1 = (x & m4); t1 ^= (t1 >> 1); return t0 ^ (t1 >> 2) ^ (t1 >> 5); } /* The following defines provide alternative definitions of FFmulX that might give improved performance if a fast 32-bit multiply is not available. private int FFmulX(int x) { int u = x & m1; u |= (u >> 1); return ((x & m2) << 1) ^ ((u >>> 3) | (u >>> 6)); } private static final int m4 = 0x1b1b1b1b; private int FFmulX(int x) { int u = x & m1; return ((x & m2) << 1) ^ ((u - (u >>> 7)) & m4); } */ private static uint Mcol(uint x) { uint t0, t1; t0 = Shift(x, 8); t1 = x ^ t0; return Shift(t1, 16) ^ t0 ^ FFmulX(t1); } private static uint Inv_Mcol(uint x) { uint t0, t1; t0 = x; t1 = t0 ^ Shift(t0, 8); t0 ^= FFmulX(t1); t1 ^= FFmulX2(t0); t0 ^= t1 ^ Shift(t1, 16); return t0; } private static uint SubWord(uint x) { return (uint)S[x&255] | (((uint)S[(x>>8)&255]) << 8) | (((uint)S[(x>>16)&255]) << 16) | (((uint)S[(x>>24)&255]) << 24); } /** * Calculate the necessary round keys * The number of calculations depends on key size and block size * AES specified a fixed block size of 128 bits and key sizes 128/192/256 bits * This code is written assuming those are the only possible values */ private uint[][] GenerateWorkingKey(byte[] key, bool forEncryption) { int keyLen = key.Length; if (keyLen < 16 || keyLen > 32 || (keyLen & 7) != 0) throw new ArgumentException("Key length not 128/192/256 bits."); int KC = keyLen >> 2; this.ROUNDS = KC + 6; // This is not always true for the generalized Rijndael that allows larger block sizes uint[][] W = new uint[ROUNDS + 1][]; // 4 words in a block for (int i = 0; i <= ROUNDS; ++i) { W[i] = new uint[4]; } switch (KC) { case 4: { uint t0 = Pack.LE_To_UInt32(key, 0); W[0][0] = t0; uint t1 = Pack.LE_To_UInt32(key, 4); W[0][1] = t1; uint t2 = Pack.LE_To_UInt32(key, 8); W[0][2] = t2; uint t3 = Pack.LE_To_UInt32(key, 12); W[0][3] = t3; for (int i = 1; i <= 10; ++i) { uint u = SubWord(Shift(t3, 8)) ^ rcon[i - 1]; t0 ^= u; W[i][0] = t0; t1 ^= t0; W[i][1] = t1; t2 ^= t1; W[i][2] = t2; t3 ^= t2; W[i][3] = t3; } break; } case 6: { uint t0 = Pack.LE_To_UInt32(key, 0); W[0][0] = t0; uint t1 = Pack.LE_To_UInt32(key, 4); W[0][1] = t1; uint t2 = Pack.LE_To_UInt32(key, 8); W[0][2] = t2; uint t3 = Pack.LE_To_UInt32(key, 12); W[0][3] = t3; uint t4 = Pack.LE_To_UInt32(key, 16); W[1][0] = t4; uint t5 = Pack.LE_To_UInt32(key, 20); W[1][1] = t5; uint rcon = 1; uint u = SubWord(Shift(t5, 8)) ^ rcon; rcon <<= 1; t0 ^= u; W[1][2] = t0; t1 ^= t0; W[1][3] = t1; t2 ^= t1; W[2][0] = t2; t3 ^= t2; W[2][1] = t3; t4 ^= t3; W[2][2] = t4; t5 ^= t4; W[2][3] = t5; for (int i = 3; i < 12; i += 3) { u = SubWord(Shift(t5, 8)) ^ rcon; rcon <<= 1; t0 ^= u; W[i ][0] = t0; t1 ^= t0; W[i ][1] = t1; t2 ^= t1; W[i ][2] = t2; t3 ^= t2; W[i ][3] = t3; t4 ^= t3; W[i + 1][0] = t4; t5 ^= t4; W[i + 1][1] = t5; u = SubWord(Shift(t5, 8)) ^ rcon; rcon <<= 1; t0 ^= u; W[i + 1][2] = t0; t1 ^= t0; W[i + 1][3] = t1; t2 ^= t1; W[i + 2][0] = t2; t3 ^= t2; W[i + 2][1] = t3; t4 ^= t3; W[i + 2][2] = t4; t5 ^= t4; W[i + 2][3] = t5; } u = SubWord(Shift(t5, 8)) ^ rcon; t0 ^= u; W[12][0] = t0; t1 ^= t0; W[12][1] = t1; t2 ^= t1; W[12][2] = t2; t3 ^= t2; W[12][3] = t3; break; } case 8: { uint t0 = Pack.LE_To_UInt32(key, 0); W[0][0] = t0; uint t1 = Pack.LE_To_UInt32(key, 4); W[0][1] = t1; uint t2 = Pack.LE_To_UInt32(key, 8); W[0][2] = t2; uint t3 = Pack.LE_To_UInt32(key, 12); W[0][3] = t3; uint t4 = Pack.LE_To_UInt32(key, 16); W[1][0] = t4; uint t5 = Pack.LE_To_UInt32(key, 20); W[1][1] = t5; uint t6 = Pack.LE_To_UInt32(key, 24); W[1][2] = t6; uint t7 = Pack.LE_To_UInt32(key, 28); W[1][3] = t7; uint u, rcon = 1; for (int i = 2; i < 14; i += 2) { u = SubWord(Shift(t7, 8)) ^ rcon; rcon <<= 1; t0 ^= u; W[i ][0] = t0; t1 ^= t0; W[i ][1] = t1; t2 ^= t1; W[i ][2] = t2; t3 ^= t2; W[i ][3] = t3; u = SubWord(t3); t4 ^= u; W[i + 1][0] = t4; t5 ^= t4; W[i + 1][1] = t5; t6 ^= t5; W[i + 1][2] = t6; t7 ^= t6; W[i + 1][3] = t7; } u = SubWord(Shift(t7, 8)) ^ rcon; t0 ^= u; W[14][0] = t0; t1 ^= t0; W[14][1] = t1; t2 ^= t1; W[14][2] = t2; t3 ^= t2; W[14][3] = t3; break; } default: { throw new InvalidOperationException("Should never get here"); } } if (!forEncryption) { for (int j = 1; j < ROUNDS; j++) { uint[] w = W[j]; for (int i = 0; i < 4; i++) { w[i] = Inv_Mcol(w[i]); } } } return W; } private int ROUNDS; private uint[][] WorkingKey; private bool forEncryption; private const int BLOCK_SIZE = 16; /** * default constructor - 128 bit block size. */ public AesLightEngine() { } /** * initialise an AES cipher. * * @param forEncryption whether or not we are for encryption. * @param parameters the parameters required to set up the cipher. * @exception ArgumentException if the parameters argument is * inappropriate. */ public virtual void Init( bool forEncryption, ICipherParameters parameters) { KeyParameter keyParameter = parameters as KeyParameter; if (keyParameter == null) throw new ArgumentException("invalid parameter passed to AES init - " + BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities.Platform.GetTypeName(parameters)); WorkingKey = GenerateWorkingKey(keyParameter.GetKey(), forEncryption); this.forEncryption = forEncryption; } public virtual string AlgorithmName { get { return "AES"; } } public virtual bool IsPartialBlockOkay { get { return false; } } public virtual int GetBlockSize() { return BLOCK_SIZE; } public virtual int ProcessBlock(byte[] input, int inOff, byte[] output, int outOff) { if (WorkingKey == null) throw new InvalidOperationException("AES engine not initialised"); Check.DataLength(input, inOff, 16, "input buffer too short"); Check.OutputLength(output, outOff, 16, "output buffer too short"); if (forEncryption) { EncryptBlock(input, inOff, output, outOff, WorkingKey); } else { DecryptBlock(input, inOff, output, outOff, WorkingKey); } return BLOCK_SIZE; } public virtual void Reset() { } private void EncryptBlock(byte[] input, int inOff, byte[] output, int outOff, uint[][] KW) { uint C0 = Pack.LE_To_UInt32(input, inOff + 0); uint C1 = Pack.LE_To_UInt32(input, inOff + 4); uint C2 = Pack.LE_To_UInt32(input, inOff + 8); uint C3 = Pack.LE_To_UInt32(input, inOff + 12); uint[] kw = KW[0]; uint t0 = C0 ^ kw[0]; uint t1 = C1 ^ kw[1]; uint t2 = C2 ^ kw[2]; uint r0, r1, r2, r3 = C3 ^ kw[3]; int r = 1; while (r < ROUNDS - 1) { kw = KW[r++]; r0 = Mcol((uint)S[t0 & 255] ^ (((uint)S[(t1 >> 8) & 255]) << 8) ^ (((uint)S[(t2 >> 16) & 255]) << 16) ^ (((uint)S[(r3 >> 24) & 255]) << 24)) ^ kw[0]; r1 = Mcol((uint)S[t1 & 255] ^ (((uint)S[(t2 >> 8) & 255]) << 8) ^ (((uint)S[(r3 >> 16) & 255]) << 16) ^ (((uint)S[(t0 >> 24) & 255]) << 24)) ^ kw[1]; r2 = Mcol((uint)S[t2 & 255] ^ (((uint)S[(r3 >> 8) & 255]) << 8) ^ (((uint)S[(t0 >> 16) & 255]) << 16) ^ (((uint)S[(t1 >> 24) & 255]) << 24)) ^ kw[2]; r3 = Mcol((uint)S[r3 & 255] ^ (((uint)S[(t0 >> 8) & 255]) << 8) ^ (((uint)S[(t1 >> 16) & 255]) << 16) ^ (((uint)S[(t2 >> 24) & 255]) << 24)) ^ kw[3]; kw = KW[r++]; t0 = Mcol((uint)S[r0 & 255] ^ (((uint)S[(r1 >> 8) & 255]) << 8) ^ (((uint)S[(r2 >> 16) & 255]) << 16) ^ (((uint)S[(r3 >> 24) & 255]) << 24)) ^ kw[0]; t1 = Mcol((uint)S[r1 & 255] ^ (((uint)S[(r2 >> 8) & 255]) << 8) ^ (((uint)S[(r3 >> 16) & 255]) << 16) ^ (((uint)S[(r0 >> 24) & 255]) << 24)) ^ kw[1]; t2 = Mcol((uint)S[r2 & 255] ^ (((uint)S[(r3 >> 8) & 255]) << 8) ^ (((uint)S[(r0 >> 16) & 255]) << 16) ^ (((uint)S[(r1 >> 24) & 255]) << 24)) ^ kw[2]; r3 = Mcol((uint)S[r3 & 255] ^ (((uint)S[(r0 >> 8) & 255]) << 8) ^ (((uint)S[(r1 >> 16) & 255]) << 16) ^ (((uint)S[(r2 >> 24) & 255]) << 24)) ^ kw[3]; } kw = KW[r++]; r0 = Mcol((uint)S[t0 & 255] ^ (((uint)S[(t1 >> 8) & 255]) << 8) ^ (((uint)S[(t2 >> 16) & 255]) << 16) ^ (((uint)S[(r3 >> 24) & 255]) << 24)) ^ kw[0]; r1 = Mcol((uint)S[t1 & 255] ^ (((uint)S[(t2 >> 8) & 255]) << 8) ^ (((uint)S[(r3 >> 16) & 255]) << 16) ^ (((uint)S[(t0 >> 24) & 255]) << 24)) ^ kw[1]; r2 = Mcol((uint)S[t2 & 255] ^ (((uint)S[(r3 >> 8) & 255]) << 8) ^ (((uint)S[(t0 >> 16) & 255]) << 16) ^ (((uint)S[(t1 >> 24) & 255]) << 24)) ^ kw[2]; r3 = Mcol((uint)S[r3 & 255] ^ (((uint)S[(t0 >> 8) & 255]) << 8) ^ (((uint)S[(t1 >> 16) & 255]) << 16) ^ (((uint)S[(t2 >> 24) & 255]) << 24)) ^ kw[3]; // the final round is a simple function of S kw = KW[r]; C0 = (uint)S[r0 & 255] ^ (((uint)S[(r1 >> 8) & 255]) << 8) ^ (((uint)S[(r2 >> 16) & 255]) << 16) ^ (((uint)S[(r3 >> 24) & 255]) << 24) ^ kw[0]; C1 = (uint)S[r1 & 255] ^ (((uint)S[(r2 >> 8) & 255]) << 8) ^ (((uint)S[(r3 >> 16) & 255]) << 16) ^ (((uint)S[(r0 >> 24) & 255]) << 24) ^ kw[1]; C2 = (uint)S[r2 & 255] ^ (((uint)S[(r3 >> 8) & 255]) << 8) ^ (((uint)S[(r0 >> 16) & 255]) << 16) ^ (((uint)S[(r1 >> 24) & 255]) << 24) ^ kw[2]; C3 = (uint)S[r3 & 255] ^ (((uint)S[(r0 >> 8) & 255]) << 8) ^ (((uint)S[(r1 >> 16) & 255]) << 16) ^ (((uint)S[(r2 >> 24) & 255]) << 24) ^ kw[3]; Pack.UInt32_To_LE(C0, output, outOff + 0); Pack.UInt32_To_LE(C1, output, outOff + 4); Pack.UInt32_To_LE(C2, output, outOff + 8); Pack.UInt32_To_LE(C3, output, outOff + 12); } private void DecryptBlock(byte[] input, int inOff, byte[] output, int outOff, uint[][] KW) { uint C0 = Pack.LE_To_UInt32(input, inOff + 0); uint C1 = Pack.LE_To_UInt32(input, inOff + 4); uint C2 = Pack.LE_To_UInt32(input, inOff + 8); uint C3 = Pack.LE_To_UInt32(input, inOff + 12); uint[] kw = KW[ROUNDS]; uint t0 = C0 ^ kw[0]; uint t1 = C1 ^ kw[1]; uint t2 = C2 ^ kw[2]; uint r0, r1, r2, r3 = C3 ^ kw[3]; int r = ROUNDS - 1; while (r > 1) { kw = KW[r--]; r0 = Inv_Mcol((uint)Si[t0 & 255] ^ (((uint)Si[(r3 >> 8) & 255]) << 8) ^ (((uint)Si[(t2 >> 16) & 255]) << 16) ^ ((uint)Si[(t1 >> 24) & 255] << 24)) ^ kw[0]; r1 = Inv_Mcol((uint)Si[t1 & 255] ^ (((uint)Si[(t0 >> 8) & 255]) << 8) ^ (((uint)Si[(r3 >> 16) & 255]) << 16) ^ ((uint)Si[(t2 >> 24) & 255] << 24)) ^ kw[1]; r2 = Inv_Mcol((uint)Si[t2 & 255] ^ (((uint)Si[(t1 >> 8) & 255]) << 8) ^ (((uint)Si[(t0 >> 16) & 255]) << 16) ^ ((uint)Si[(r3 >> 24) & 255] << 24)) ^ kw[2]; r3 = Inv_Mcol((uint)Si[r3 & 255] ^ (((uint)Si[(t2 >> 8) & 255]) << 8) ^ (((uint)Si[(t1 >> 16) & 255]) << 16) ^ ((uint)Si[(t0 >> 24) & 255] << 24)) ^ kw[3]; kw = KW[r--]; t0 = Inv_Mcol((uint)Si[r0 & 255] ^ (((uint)Si[(r3 >> 8) & 255]) << 8) ^ (((uint)Si[(r2 >> 16) & 255]) << 16) ^ ((uint)Si[(r1 >> 24) & 255] << 24)) ^ kw[0]; t1 = Inv_Mcol((uint)Si[r1 & 255] ^ (((uint)Si[(r0 >> 8) & 255]) << 8) ^ (((uint)Si[(r3 >> 16) & 255]) << 16) ^ ((uint)Si[(r2 >> 24) & 255] << 24)) ^ kw[1]; t2 = Inv_Mcol((uint)Si[r2 & 255] ^ (((uint)Si[(r1 >> 8) & 255]) << 8) ^ (((uint)Si[(r0 >> 16) & 255]) << 16) ^ ((uint)Si[(r3 >> 24) & 255] << 24)) ^ kw[2]; r3 = Inv_Mcol((uint)Si[r3 & 255] ^ (((uint)Si[(r2 >> 8) & 255]) << 8) ^ (((uint)Si[(r1 >> 16) & 255]) << 16) ^ ((uint)Si[(r0 >> 24) & 255] << 24)) ^ kw[3]; } kw = KW[1]; r0 = Inv_Mcol((uint)Si[t0 & 255] ^ (((uint)Si[(r3 >> 8) & 255]) << 8) ^ (((uint)Si[(t2 >> 16) & 255]) << 16) ^ ((uint)Si[(t1 >> 24) & 255] << 24)) ^ kw[0]; r1 = Inv_Mcol((uint)Si[t1 & 255] ^ (((uint)Si[(t0 >> 8) & 255]) << 8) ^ (((uint)Si[(r3 >> 16) & 255]) << 16) ^ ((uint)Si[(t2 >> 24) & 255] << 24)) ^ kw[1]; r2 = Inv_Mcol((uint)Si[t2 & 255] ^ (((uint)Si[(t1 >> 8) & 255]) << 8) ^ (((uint)Si[(t0 >> 16) & 255]) << 16) ^ ((uint)Si[(r3 >> 24) & 255] << 24)) ^ kw[2]; r3 = Inv_Mcol((uint)Si[r3 & 255] ^ (((uint)Si[(t2 >> 8) & 255]) << 8) ^ (((uint)Si[(t1 >> 16) & 255]) << 16) ^ ((uint)Si[(t0 >> 24) & 255] << 24)) ^ kw[3]; // the final round's table is a simple function of Si kw = KW[0]; C0 = (uint)Si[r0 & 255] ^ (((uint)Si[(r3 >> 8) & 255]) << 8) ^ (((uint)Si[(r2 >> 16) & 255]) << 16) ^ (((uint)Si[(r1 >> 24) & 255]) << 24) ^ kw[0]; C1 = (uint)Si[r1 & 255] ^ (((uint)Si[(r0 >> 8) & 255]) << 8) ^ (((uint)Si[(r3 >> 16) & 255]) << 16) ^ (((uint)Si[(r2 >> 24) & 255]) << 24) ^ kw[1]; C2 = (uint)Si[r2 & 255] ^ (((uint)Si[(r1 >> 8) & 255]) << 8) ^ (((uint)Si[(r0 >> 16) & 255]) << 16) ^ (((uint)Si[(r3 >> 24) & 255]) << 24) ^ kw[2]; C3 = (uint)Si[r3 & 255] ^ (((uint)Si[(r2 >> 8) & 255]) << 8) ^ (((uint)Si[(r1 >> 16) & 255]) << 16) ^ (((uint)Si[(r0 >> 24) & 255]) << 24) ^ kw[3]; Pack.UInt32_To_LE(C0, output, outOff + 0); Pack.UInt32_To_LE(C1, output, outOff + 4); Pack.UInt32_To_LE(C2, output, outOff + 8); Pack.UInt32_To_LE(C3, output, outOff + 12); } } } #pragma warning restore #endif