#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR) #pragma warning disable using System; using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters; using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Utilities; using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities; using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities.Encoders; namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Engines { /// /// Implementation of the Threefish tweakable large block cipher in 256, 512 and 1024 bit block /// sizes. /// /// /// This is the 1.3 version of Threefish defined in the Skein hash function submission to the NIST /// SHA-3 competition in October 2010. ///

/// Threefish was designed by Niels Ferguson - Stefan Lucks - Bruce Schneier - Doug Whiting - Mihir /// Bellare - Tadayoshi Kohno - Jon Callas - Jesse Walker. ///

/// This implementation inlines all round functions, unrolls 8 rounds, and uses 1.2k of static tables /// to speed up key schedule injection.
/// 2 x block size state is retained by each cipher instance. /// public class ThreefishEngine : IBlockCipher { ///

/// 256 bit block size - Threefish-256 /// public const int BLOCKSIZE_256 = 256; /// /// 512 bit block size - Threefish-512 /// public const int BLOCKSIZE_512 = 512; /// /// 1024 bit block size - Threefish-1024 /// public const int BLOCKSIZE_1024 = 1024; /** * Size of the tweak in bytes (always 128 bit/16 bytes) */ private const int TWEAK_SIZE_BYTES = 16; private const int TWEAK_SIZE_WORDS = TWEAK_SIZE_BYTES / 8; /** * Rounds in Threefish-256 */ private const int ROUNDS_256 = 72; /** * Rounds in Threefish-512 */ private const int ROUNDS_512 = 72; /** * Rounds in Threefish-1024 */ private const int ROUNDS_1024 = 80; /** * Max rounds of any of the variants */ private const int MAX_ROUNDS = ROUNDS_1024; /** * Key schedule parity constant */ private const ulong C_240 = 0x1BD11BDAA9FC1A22L; /* Pre-calculated modulo arithmetic tables for key schedule lookups */ private static readonly int[] MOD9 = new int[MAX_ROUNDS]; private static readonly int[] MOD17 = new int[MOD9.Length]; private static readonly int[] MOD5 = new int[MOD9.Length]; private static readonly int[] MOD3 = new int[MOD9.Length]; static ThreefishEngine() { for (int i = 0; i < MOD9.Length; i++) { MOD17[i] = i % 17; MOD9[i] = i % 9; MOD5[i] = i % 5; MOD3[i] = i % 3; } } /** * Block size in bytes */ private readonly int blocksizeBytes; /** * Block size in 64 bit words */ private readonly int blocksizeWords; /** * Buffer for byte oriented processBytes to call internal word API */ private readonly ulong[] currentBlock; /** * Tweak bytes (2 byte t1,t2, calculated t3 and repeat of t1,t2 for modulo free lookup */ private readonly ulong[] t = new ulong[5]; /** * Key schedule words */ private readonly ulong[] kw; /** * The internal cipher implementation (varies by blocksize) */ private readonly ThreefishCipher cipher; private bool forEncryption; /// /// Constructs a new Threefish cipher, with a specified block size. /// /// the block size in bits, one of , , /// . public ThreefishEngine(int blocksizeBits) { this.blocksizeBytes = (blocksizeBits / 8); this.blocksizeWords = (this.blocksizeBytes / 8); this.currentBlock = new ulong[blocksizeWords]; /* * Provide room for original key words, extended key word and repeat of key words for modulo * free lookup of key schedule words. */ this.kw = new ulong[2 * blocksizeWords + 1]; switch (blocksizeBits) { case BLOCKSIZE_256: cipher = new Threefish256Cipher(kw, t); break; case BLOCKSIZE_512: cipher = new Threefish512Cipher(kw, t); break; case BLOCKSIZE_1024: cipher = new Threefish1024Cipher(kw, t); break; default: throw new ArgumentException( "Invalid blocksize - Threefish is defined with block size of 256, 512, or 1024 bits"); } } /// /// Initialise the engine. /// /// Initialise for encryption if true, for decryption if false. /// an instance of or (to /// use a 0 tweak) public virtual void Init(bool forEncryption, ICipherParameters parameters) { byte[] keyBytes; byte[] tweakBytes; if (parameters is TweakableBlockCipherParameters) { TweakableBlockCipherParameters tParams = (TweakableBlockCipherParameters)parameters; keyBytes = tParams.Key.GetKey(); tweakBytes = tParams.Tweak; } else if (parameters is KeyParameter) { keyBytes = ((KeyParameter)parameters).GetKey(); tweakBytes = null; } else { throw new ArgumentException("Invalid parameter passed to Threefish init - " + BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities.Platform.GetTypeName(parameters)); } ulong[] keyWords = null; ulong[] tweakWords = null; if (keyBytes != null) { if (keyBytes.Length != this.blocksizeBytes) { throw new ArgumentException("Threefish key must be same size as block (" + blocksizeBytes + " bytes)"); } keyWords = new ulong[blocksizeWords]; for (int i = 0; i < keyWords.Length; i++) { keyWords[i] = BytesToWord(keyBytes, i * 8); } } if (tweakBytes != null) { if (tweakBytes.Length != TWEAK_SIZE_BYTES) { throw new ArgumentException("Threefish tweak must be " + TWEAK_SIZE_BYTES + " bytes"); } tweakWords = new ulong[]{BytesToWord(tweakBytes, 0), BytesToWord(tweakBytes, 8)}; } Init(forEncryption, keyWords, tweakWords); } /// /// Initialise the engine, specifying the key and tweak directly. /// /// the cipher mode. /// the words of the key, or null to use the current key. /// the 2 word (128 bit) tweak, or null to use the current tweak. internal void Init(bool forEncryption, ulong[] key, ulong[] tweak) { this.forEncryption = forEncryption; if (key != null) { SetKey(key); } if (tweak != null) { SetTweak(tweak); } } private void SetKey(ulong[] key) { if (key.Length != this.blocksizeWords) { throw new ArgumentException("Threefish key must be same size as block (" + blocksizeWords + " words)"); } /* * Full subkey schedule is deferred to execution to avoid per cipher overhead (10k for 512, * 20k for 1024). * * Key and tweak word sequences are repeated, and static MOD17/MOD9/MOD5/MOD3 calculations * used, to avoid expensive mod computations during cipher operation. */ ulong knw = C_240; for (int i = 0; i < blocksizeWords; i++) { kw[i] = key[i]; knw = knw ^ kw[i]; } kw[blocksizeWords] = knw; Array.Copy(kw, 0, kw, blocksizeWords + 1, blocksizeWords); } private void SetTweak(ulong[] tweak) { if (tweak.Length != TWEAK_SIZE_WORDS) { throw new ArgumentException("Tweak must be " + TWEAK_SIZE_WORDS + " words."); } /* * Tweak schedule partially repeated to avoid mod computations during cipher operation */ t[0] = tweak[0]; t[1] = tweak[1]; t[2] = t[0] ^ t[1]; t[3] = t[0]; t[4] = t[1]; } public virtual string AlgorithmName { get { return "Threefish-" + (blocksizeBytes * 8); } } public virtual bool IsPartialBlockOkay { get { return false; } } public virtual int GetBlockSize() { return blocksizeBytes; } public virtual void Reset() { } public virtual int ProcessBlock(byte[] inBytes, int inOff, byte[] outBytes, int outOff) { if ((outOff + blocksizeBytes) > outBytes.Length) { throw new DataLengthException("Output buffer too short"); } if ((inOff + blocksizeBytes) > inBytes.Length) { throw new DataLengthException("Input buffer too short"); } for (int i = 0; i < blocksizeBytes; i += 8) { currentBlock[i >> 3] = BytesToWord(inBytes, inOff + i); } ProcessBlock(this.currentBlock, this.currentBlock); for (int i = 0; i < blocksizeBytes; i += 8) { WordToBytes(this.currentBlock[i >> 3], outBytes, outOff + i); } return blocksizeBytes; } /// /// Process a block of data represented as 64 bit words. /// /// the number of 8 byte words processed (which will be the same as the block size). /// a block sized buffer of words to process. /// a block sized buffer of words to receive the output of the operation. /// if either the input or output is not block sized /// if this engine is not initialised internal int ProcessBlock(ulong[] inWords, ulong[] outWords) { if (kw[blocksizeWords] == 0) { throw new InvalidOperationException("Threefish engine not initialised"); } if (inWords.Length != blocksizeWords) { throw new DataLengthException("Input buffer too short"); } if (outWords.Length != blocksizeWords) { throw new DataLengthException("Output buffer too short"); } if (forEncryption) { cipher.EncryptBlock(inWords, outWords); } else { cipher.DecryptBlock(inWords, outWords); } return blocksizeWords; } /// /// Read a single 64 bit word from input in LSB first order. /// internal static ulong BytesToWord(byte[] bytes, int off) { if ((off + 8) > bytes.Length) { // Help the JIT avoid index checks throw new ArgumentException(); } ulong word = 0; int index = off; word = (bytes[index++] & 0xffUL); word |= (bytes[index++] & 0xffUL) << 8; word |= (bytes[index++] & 0xffUL) << 16; word |= (bytes[index++] & 0xffUL) << 24; word |= (bytes[index++] & 0xffUL) << 32; word |= (bytes[index++] & 0xffUL) << 40; word |= (bytes[index++] & 0xffUL) << 48; word |= (bytes[index++] & 0xffUL) << 56; return word; } /// /// Write a 64 bit word to output in LSB first order. /// internal static void WordToBytes(ulong word, byte[] bytes, int off) { if ((off + 8) > bytes.Length) { // Help the JIT avoid index checks throw new ArgumentException(); } int index = off; bytes[index++] = (byte)word; bytes[index++] = (byte)(word >> 8); bytes[index++] = (byte)(word >> 16); bytes[index++] = (byte)(word >> 24); bytes[index++] = (byte)(word >> 32); bytes[index++] = (byte)(word >> 40); bytes[index++] = (byte)(word >> 48); bytes[index++] = (byte)(word >> 56); } /** * Rotate left + xor part of the mix operation. */ private static ulong RotlXor(ulong x, int n, ulong xor) { return ((x << n) | (x >> (64 - n))) ^ xor; } /** * Rotate xor + rotate right part of the unmix operation. */ private static ulong XorRotr(ulong x, int n, ulong xor) { ulong xored = x ^ xor; return (xored >> n) | (xored << (64 - n)); } private abstract class ThreefishCipher { /** * The extended + repeated tweak words */ protected readonly ulong[] t; /** * The extended + repeated key words */ protected readonly ulong[] kw; protected ThreefishCipher(ulong[] kw, ulong[] t) { this.kw = kw; this.t = t; } internal abstract void EncryptBlock(ulong[] block, ulong[] outWords); internal abstract void DecryptBlock(ulong[] block, ulong[] outWords); } private sealed class Threefish256Cipher : ThreefishCipher { /** * Mix rotation constants defined in Skein 1.3 specification */ private const int ROTATION_0_0 = 14, ROTATION_0_1 = 16; private const int ROTATION_1_0 = 52, ROTATION_1_1 = 57; private const int ROTATION_2_0 = 23, ROTATION_2_1 = 40; private const int ROTATION_3_0 = 5, ROTATION_3_1 = 37; private const int ROTATION_4_0 = 25, ROTATION_4_1 = 33; private const int ROTATION_5_0 = 46, ROTATION_5_1 = 12; private const int ROTATION_6_0 = 58, ROTATION_6_1 = 22; private const int ROTATION_7_0 = 32, ROTATION_7_1 = 32; public Threefish256Cipher(ulong[] kw, ulong[] t) : base(kw, t) { } internal override void EncryptBlock(ulong[] block, ulong[] outWords) { ulong[] kw = this.kw; ulong[] t = this.t; int[] mod5 = MOD5; int[] mod3 = MOD3; /* Help the JIT avoid index bounds checks */ if (kw.Length != 9) { throw new ArgumentException(); } if (t.Length != 5) { throw new ArgumentException(); } /* * Read 4 words of plaintext data, not using arrays for cipher state */ ulong b0 = block[0]; ulong b1 = block[1]; ulong b2 = block[2]; ulong b3 = block[3]; /* * First subkey injection. */ b0 += kw[0]; b1 += kw[1] + t[0]; b2 += kw[2] + t[1]; b3 += kw[3]; /* * Rounds loop, unrolled to 8 rounds per iteration. * * Unrolling to multiples of 4 avoids the mod 4 check for key injection, and allows * inlining of the permutations, which cycle every of 2 rounds (avoiding array * index/lookup). * * Unrolling to multiples of 8 avoids the mod 8 rotation constant lookup, and allows * inlining constant rotation values (avoiding array index/lookup). */ for (int d = 1; d < (ROUNDS_256 / 4); d += 2) { int dm5 = mod5[d]; int dm3 = mod3[d]; /* * 4 rounds of mix and permute. * * Permute schedule has a 2 round cycle, so permutes are inlined in the mix * operations in each 4 round block. */ b1 = RotlXor(b1, ROTATION_0_0, b0 += b1); b3 = RotlXor(b3, ROTATION_0_1, b2 += b3); b3 = RotlXor(b3, ROTATION_1_0, b0 += b3); b1 = RotlXor(b1, ROTATION_1_1, b2 += b1); b1 = RotlXor(b1, ROTATION_2_0, b0 += b1); b3 = RotlXor(b3, ROTATION_2_1, b2 += b3); b3 = RotlXor(b3, ROTATION_3_0, b0 += b3); b1 = RotlXor(b1, ROTATION_3_1, b2 += b1); /* * Subkey injection for first 4 rounds. */ b0 += kw[dm5]; b1 += kw[dm5 + 1] + t[dm3]; b2 += kw[dm5 + 2] + t[dm3 + 1]; b3 += kw[dm5 + 3] + (uint)d; /* * 4 more rounds of mix/permute */ b1 = RotlXor(b1, ROTATION_4_0, b0 += b1); b3 = RotlXor(b3, ROTATION_4_1, b2 += b3); b3 = RotlXor(b3, ROTATION_5_0, b0 += b3); b1 = RotlXor(b1, ROTATION_5_1, b2 += b1); b1 = RotlXor(b1, ROTATION_6_0, b0 += b1); b3 = RotlXor(b3, ROTATION_6_1, b2 += b3); b3 = RotlXor(b3, ROTATION_7_0, b0 += b3); b1 = RotlXor(b1, ROTATION_7_1, b2 += b1); /* * Subkey injection for next 4 rounds. */ b0 += kw[dm5 + 1]; b1 += kw[dm5 + 2] + t[dm3 + 1]; b2 += kw[dm5 + 3] + t[dm3 + 2]; b3 += kw[dm5 + 4] + (uint)d + 1; } /* * Output cipher state. */ outWords[0] = b0; outWords[1] = b1; outWords[2] = b2; outWords[3] = b3; } internal override void DecryptBlock(ulong[] block, ulong[] state) { ulong[] kw = this.kw; ulong[] t = this.t; int[] mod5 = MOD5; int[] mod3 = MOD3; /* Help the JIT avoid index bounds checks */ if (kw.Length != 9) { throw new ArgumentException(); } if (t.Length != 5) { throw new ArgumentException(); } ulong b0 = block[0]; ulong b1 = block[1]; ulong b2 = block[2]; ulong b3 = block[3]; for (int d = (ROUNDS_256 / 4) - 1; d >= 1; d -= 2) { int dm5 = mod5[d]; int dm3 = mod3[d]; /* Reverse key injection for second 4 rounds */ b0 -= kw[dm5 + 1]; b1 -= kw[dm5 + 2] + t[dm3 + 1]; b2 -= kw[dm5 + 3] + t[dm3 + 2]; b3 -= kw[dm5 + 4] + (uint)d + 1; /* Reverse second 4 mix/permute rounds */ b3 = XorRotr(b3, ROTATION_7_0, b0); b0 -= b3; b1 = XorRotr(b1, ROTATION_7_1, b2); b2 -= b1; b1 = XorRotr(b1, ROTATION_6_0, b0); b0 -= b1; b3 = XorRotr(b3, ROTATION_6_1, b2); b2 -= b3; b3 = XorRotr(b3, ROTATION_5_0, b0); b0 -= b3; b1 = XorRotr(b1, ROTATION_5_1, b2); b2 -= b1; b1 = XorRotr(b1, ROTATION_4_0, b0); b0 -= b1; b3 = XorRotr(b3, ROTATION_4_1, b2); b2 -= b3; /* Reverse key injection for first 4 rounds */ b0 -= kw[dm5]; b1 -= kw[dm5 + 1] + t[dm3]; b2 -= kw[dm5 + 2] + t[dm3 + 1]; b3 -= kw[dm5 + 3] + (uint)d; /* Reverse first 4 mix/permute rounds */ b3 = XorRotr(b3, ROTATION_3_0, b0); b0 -= b3; b1 = XorRotr(b1, ROTATION_3_1, b2); b2 -= b1; b1 = XorRotr(b1, ROTATION_2_0, b0); b0 -= b1; b3 = XorRotr(b3, ROTATION_2_1, b2); b2 -= b3; b3 = XorRotr(b3, ROTATION_1_0, b0); b0 -= b3; b1 = XorRotr(b1, ROTATION_1_1, b2); b2 -= b1; b1 = XorRotr(b1, ROTATION_0_0, b0); b0 -= b1; b3 = XorRotr(b3, ROTATION_0_1, b2); b2 -= b3; } /* * First subkey uninjection. */ b0 -= kw[0]; b1 -= kw[1] + t[0]; b2 -= kw[2] + t[1]; b3 -= kw[3]; /* * Output cipher state. */ state[0] = b0; state[1] = b1; state[2] = b2; state[3] = b3; } } private sealed class Threefish512Cipher : ThreefishCipher { /** * Mix rotation constants defined in Skein 1.3 specification */ private const int ROTATION_0_0 = 46, ROTATION_0_1 = 36, ROTATION_0_2 = 19, ROTATION_0_3 = 37; private const int ROTATION_1_0 = 33, ROTATION_1_1 = 27, ROTATION_1_2 = 14, ROTATION_1_3 = 42; private const int ROTATION_2_0 = 17, ROTATION_2_1 = 49, ROTATION_2_2 = 36, ROTATION_2_3 = 39; private const int ROTATION_3_0 = 44, ROTATION_3_1 = 9, ROTATION_3_2 = 54, ROTATION_3_3 = 56; private const int ROTATION_4_0 = 39, ROTATION_4_1 = 30, ROTATION_4_2 = 34, ROTATION_4_3 = 24; private const int ROTATION_5_0 = 13, ROTATION_5_1 = 50, ROTATION_5_2 = 10, ROTATION_5_3 = 17; private const int ROTATION_6_0 = 25, ROTATION_6_1 = 29, ROTATION_6_2 = 39, ROTATION_6_3 = 43; private const int ROTATION_7_0 = 8, ROTATION_7_1 = 35, ROTATION_7_2 = 56, ROTATION_7_3 = 22; internal Threefish512Cipher(ulong[] kw, ulong[] t) : base(kw, t) { } internal override void EncryptBlock(ulong[] block, ulong[] outWords) { ulong[] kw = this.kw; ulong[] t = this.t; int[] mod9 = MOD9; int[] mod3 = MOD3; /* Help the JIT avoid index bounds checks */ if (kw.Length != 17) { throw new ArgumentException(); } if (t.Length != 5) { throw new ArgumentException(); } /* * Read 8 words of plaintext data, not using arrays for cipher state */ ulong b0 = block[0]; ulong b1 = block[1]; ulong b2 = block[2]; ulong b3 = block[3]; ulong b4 = block[4]; ulong b5 = block[5]; ulong b6 = block[6]; ulong b7 = block[7]; /* * First subkey injection. */ b0 += kw[0]; b1 += kw[1]; b2 += kw[2]; b3 += kw[3]; b4 += kw[4]; b5 += kw[5] + t[0]; b6 += kw[6] + t[1]; b7 += kw[7]; /* * Rounds loop, unrolled to 8 rounds per iteration. * * Unrolling to multiples of 4 avoids the mod 4 check for key injection, and allows * inlining of the permutations, which cycle every of 4 rounds (avoiding array * index/lookup). * * Unrolling to multiples of 8 avoids the mod 8 rotation constant lookup, and allows * inlining constant rotation values (avoiding array index/lookup). */ for (int d = 1; d < (ROUNDS_512 / 4); d += 2) { int dm9 = mod9[d]; int dm3 = mod3[d]; /* * 4 rounds of mix and permute. * * Permute schedule has a 4 round cycle, so permutes are inlined in the mix * operations in each 4 round block. */ b1 = RotlXor(b1, ROTATION_0_0, b0 += b1); b3 = RotlXor(b3, ROTATION_0_1, b2 += b3); b5 = RotlXor(b5, ROTATION_0_2, b4 += b5); b7 = RotlXor(b7, ROTATION_0_3, b6 += b7); b1 = RotlXor(b1, ROTATION_1_0, b2 += b1); b7 = RotlXor(b7, ROTATION_1_1, b4 += b7); b5 = RotlXor(b5, ROTATION_1_2, b6 += b5); b3 = RotlXor(b3, ROTATION_1_3, b0 += b3); b1 = RotlXor(b1, ROTATION_2_0, b4 += b1); b3 = RotlXor(b3, ROTATION_2_1, b6 += b3); b5 = RotlXor(b5, ROTATION_2_2, b0 += b5); b7 = RotlXor(b7, ROTATION_2_3, b2 += b7); b1 = RotlXor(b1, ROTATION_3_0, b6 += b1); b7 = RotlXor(b7, ROTATION_3_1, b0 += b7); b5 = RotlXor(b5, ROTATION_3_2, b2 += b5); b3 = RotlXor(b3, ROTATION_3_3, b4 += b3); /* * Subkey injection for first 4 rounds. */ b0 += kw[dm9]; b1 += kw[dm9 + 1]; b2 += kw[dm9 + 2]; b3 += kw[dm9 + 3]; b4 += kw[dm9 + 4]; b5 += kw[dm9 + 5] + t[dm3]; b6 += kw[dm9 + 6] + t[dm3 + 1]; b7 += kw[dm9 + 7] + (uint)d; /* * 4 more rounds of mix/permute */ b1 = RotlXor(b1, ROTATION_4_0, b0 += b1); b3 = RotlXor(b3, ROTATION_4_1, b2 += b3); b5 = RotlXor(b5, ROTATION_4_2, b4 += b5); b7 = RotlXor(b7, ROTATION_4_3, b6 += b7); b1 = RotlXor(b1, ROTATION_5_0, b2 += b1); b7 = RotlXor(b7, ROTATION_5_1, b4 += b7); b5 = RotlXor(b5, ROTATION_5_2, b6 += b5); b3 = RotlXor(b3, ROTATION_5_3, b0 += b3); b1 = RotlXor(b1, ROTATION_6_0, b4 += b1); b3 = RotlXor(b3, ROTATION_6_1, b6 += b3); b5 = RotlXor(b5, ROTATION_6_2, b0 += b5); b7 = RotlXor(b7, ROTATION_6_3, b2 += b7); b1 = RotlXor(b1, ROTATION_7_0, b6 += b1); b7 = RotlXor(b7, ROTATION_7_1, b0 += b7); b5 = RotlXor(b5, ROTATION_7_2, b2 += b5); b3 = RotlXor(b3, ROTATION_7_3, b4 += b3); /* * Subkey injection for next 4 rounds. */ b0 += kw[dm9 + 1]; b1 += kw[dm9 + 2]; b2 += kw[dm9 + 3]; b3 += kw[dm9 + 4]; b4 += kw[dm9 + 5]; b5 += kw[dm9 + 6] + t[dm3 + 1]; b6 += kw[dm9 + 7] + t[dm3 + 2]; b7 += kw[dm9 + 8] + (uint)d + 1; } /* * Output cipher state. */ outWords[0] = b0; outWords[1] = b1; outWords[2] = b2; outWords[3] = b3; outWords[4] = b4; outWords[5] = b5; outWords[6] = b6; outWords[7] = b7; } internal override void DecryptBlock(ulong[] block, ulong[] state) { ulong[] kw = this.kw; ulong[] t = this.t; int[] mod9 = MOD9; int[] mod3 = MOD3; /* Help the JIT avoid index bounds checks */ if (kw.Length != 17) { throw new ArgumentException(); } if (t.Length != 5) { throw new ArgumentException(); } ulong b0 = block[0]; ulong b1 = block[1]; ulong b2 = block[2]; ulong b3 = block[3]; ulong b4 = block[4]; ulong b5 = block[5]; ulong b6 = block[6]; ulong b7 = block[7]; for (int d = (ROUNDS_512 / 4) - 1; d >= 1; d -= 2) { int dm9 = mod9[d]; int dm3 = mod3[d]; /* Reverse key injection for second 4 rounds */ b0 -= kw[dm9 + 1]; b1 -= kw[dm9 + 2]; b2 -= kw[dm9 + 3]; b3 -= kw[dm9 + 4]; b4 -= kw[dm9 + 5]; b5 -= kw[dm9 + 6] + t[dm3 + 1]; b6 -= kw[dm9 + 7] + t[dm3 + 2]; b7 -= kw[dm9 + 8] + (uint)d + 1; /* Reverse second 4 mix/permute rounds */ b1 = XorRotr(b1, ROTATION_7_0, b6); b6 -= b1; b7 = XorRotr(b7, ROTATION_7_1, b0); b0 -= b7; b5 = XorRotr(b5, ROTATION_7_2, b2); b2 -= b5; b3 = XorRotr(b3, ROTATION_7_3, b4); b4 -= b3; b1 = XorRotr(b1, ROTATION_6_0, b4); b4 -= b1; b3 = XorRotr(b3, ROTATION_6_1, b6); b6 -= b3; b5 = XorRotr(b5, ROTATION_6_2, b0); b0 -= b5; b7 = XorRotr(b7, ROTATION_6_3, b2); b2 -= b7; b1 = XorRotr(b1, ROTATION_5_0, b2); b2 -= b1; b7 = XorRotr(b7, ROTATION_5_1, b4); b4 -= b7; b5 = XorRotr(b5, ROTATION_5_2, b6); b6 -= b5; b3 = XorRotr(b3, ROTATION_5_3, b0); b0 -= b3; b1 = XorRotr(b1, ROTATION_4_0, b0); b0 -= b1; b3 = XorRotr(b3, ROTATION_4_1, b2); b2 -= b3; b5 = XorRotr(b5, ROTATION_4_2, b4); b4 -= b5; b7 = XorRotr(b7, ROTATION_4_3, b6); b6 -= b7; /* Reverse key injection for first 4 rounds */ b0 -= kw[dm9]; b1 -= kw[dm9 + 1]; b2 -= kw[dm9 + 2]; b3 -= kw[dm9 + 3]; b4 -= kw[dm9 + 4]; b5 -= kw[dm9 + 5] + t[dm3]; b6 -= kw[dm9 + 6] + t[dm3 + 1]; b7 -= kw[dm9 + 7] + (uint)d; /* Reverse first 4 mix/permute rounds */ b1 = XorRotr(b1, ROTATION_3_0, b6); b6 -= b1; b7 = XorRotr(b7, ROTATION_3_1, b0); b0 -= b7; b5 = XorRotr(b5, ROTATION_3_2, b2); b2 -= b5; b3 = XorRotr(b3, ROTATION_3_3, b4); b4 -= b3; b1 = XorRotr(b1, ROTATION_2_0, b4); b4 -= b1; b3 = XorRotr(b3, ROTATION_2_1, b6); b6 -= b3; b5 = XorRotr(b5, ROTATION_2_2, b0); b0 -= b5; b7 = XorRotr(b7, ROTATION_2_3, b2); b2 -= b7; b1 = XorRotr(b1, ROTATION_1_0, b2); b2 -= b1; b7 = XorRotr(b7, ROTATION_1_1, b4); b4 -= b7; b5 = XorRotr(b5, ROTATION_1_2, b6); b6 -= b5; b3 = XorRotr(b3, ROTATION_1_3, b0); b0 -= b3; b1 = XorRotr(b1, ROTATION_0_0, b0); b0 -= b1; b3 = XorRotr(b3, ROTATION_0_1, b2); b2 -= b3; b5 = XorRotr(b5, ROTATION_0_2, b4); b4 -= b5; b7 = XorRotr(b7, ROTATION_0_3, b6); b6 -= b7; } /* * First subkey uninjection. */ b0 -= kw[0]; b1 -= kw[1]; b2 -= kw[2]; b3 -= kw[3]; b4 -= kw[4]; b5 -= kw[5] + t[0]; b6 -= kw[6] + t[1]; b7 -= kw[7]; /* * Output cipher state. */ state[0] = b0; state[1] = b1; state[2] = b2; state[3] = b3; state[4] = b4; state[5] = b5; state[6] = b6; state[7] = b7; } } private sealed class Threefish1024Cipher : ThreefishCipher { /** * Mix rotation constants defined in Skein 1.3 specification */ private const int ROTATION_0_0 = 24, ROTATION_0_1 = 13, ROTATION_0_2 = 8, ROTATION_0_3 = 47; private const int ROTATION_0_4 = 8, ROTATION_0_5 = 17, ROTATION_0_6 = 22, ROTATION_0_7 = 37; private const int ROTATION_1_0 = 38, ROTATION_1_1 = 19, ROTATION_1_2 = 10, ROTATION_1_3 = 55; private const int ROTATION_1_4 = 49, ROTATION_1_5 = 18, ROTATION_1_6 = 23, ROTATION_1_7 = 52; private const int ROTATION_2_0 = 33, ROTATION_2_1 = 4, ROTATION_2_2 = 51, ROTATION_2_3 = 13; private const int ROTATION_2_4 = 34, ROTATION_2_5 = 41, ROTATION_2_6 = 59, ROTATION_2_7 = 17; private const int ROTATION_3_0 = 5, ROTATION_3_1 = 20, ROTATION_3_2 = 48, ROTATION_3_3 = 41; private const int ROTATION_3_4 = 47, ROTATION_3_5 = 28, ROTATION_3_6 = 16, ROTATION_3_7 = 25; private const int ROTATION_4_0 = 41, ROTATION_4_1 = 9, ROTATION_4_2 = 37, ROTATION_4_3 = 31; private const int ROTATION_4_4 = 12, ROTATION_4_5 = 47, ROTATION_4_6 = 44, ROTATION_4_7 = 30; private const int ROTATION_5_0 = 16, ROTATION_5_1 = 34, ROTATION_5_2 = 56, ROTATION_5_3 = 51; private const int ROTATION_5_4 = 4, ROTATION_5_5 = 53, ROTATION_5_6 = 42, ROTATION_5_7 = 41; private const int ROTATION_6_0 = 31, ROTATION_6_1 = 44, ROTATION_6_2 = 47, ROTATION_6_3 = 46; private const int ROTATION_6_4 = 19, ROTATION_6_5 = 42, ROTATION_6_6 = 44, ROTATION_6_7 = 25; private const int ROTATION_7_0 = 9, ROTATION_7_1 = 48, ROTATION_7_2 = 35, ROTATION_7_3 = 52; private const int ROTATION_7_4 = 23, ROTATION_7_5 = 31, ROTATION_7_6 = 37, ROTATION_7_7 = 20; public Threefish1024Cipher(ulong[] kw, ulong[] t) : base(kw, t) { } internal override void EncryptBlock(ulong[] block, ulong[] outWords) { ulong[] kw = this.kw; ulong[] t = this.t; int[] mod17 = MOD17; int[] mod3 = MOD3; /* Help the JIT avoid index bounds checks */ if (kw.Length != 33) { throw new ArgumentException(); } if (t.Length != 5) { throw new ArgumentException(); } /* * Read 16 words of plaintext data, not using arrays for cipher state */ ulong b0 = block[0]; ulong b1 = block[1]; ulong b2 = block[2]; ulong b3 = block[3]; ulong b4 = block[4]; ulong b5 = block[5]; ulong b6 = block[6]; ulong b7 = block[7]; ulong b8 = block[8]; ulong b9 = block[9]; ulong b10 = block[10]; ulong b11 = block[11]; ulong b12 = block[12]; ulong b13 = block[13]; ulong b14 = block[14]; ulong b15 = block[15]; /* * First subkey injection. */ b0 += kw[0]; b1 += kw[1]; b2 += kw[2]; b3 += kw[3]; b4 += kw[4]; b5 += kw[5]; b6 += kw[6]; b7 += kw[7]; b8 += kw[8]; b9 += kw[9]; b10 += kw[10]; b11 += kw[11]; b12 += kw[12]; b13 += kw[13] + t[0]; b14 += kw[14] + t[1]; b15 += kw[15]; /* * Rounds loop, unrolled to 8 rounds per iteration. * * Unrolling to multiples of 4 avoids the mod 4 check for key injection, and allows * inlining of the permutations, which cycle every of 4 rounds (avoiding array * index/lookup). * * Unrolling to multiples of 8 avoids the mod 8 rotation constant lookup, and allows * inlining constant rotation values (avoiding array index/lookup). */ for (int d = 1; d < (ROUNDS_1024 / 4); d += 2) { int dm17 = mod17[d]; int dm3 = mod3[d]; /* * 4 rounds of mix and permute. * * Permute schedule has a 4 round cycle, so permutes are inlined in the mix * operations in each 4 round block. */ b1 = RotlXor(b1, ROTATION_0_0, b0 += b1); b3 = RotlXor(b3, ROTATION_0_1, b2 += b3); b5 = RotlXor(b5, ROTATION_0_2, b4 += b5); b7 = RotlXor(b7, ROTATION_0_3, b6 += b7); b9 = RotlXor(b9, ROTATION_0_4, b8 += b9); b11 = RotlXor(b11, ROTATION_0_5, b10 += b11); b13 = RotlXor(b13, ROTATION_0_6, b12 += b13); b15 = RotlXor(b15, ROTATION_0_7, b14 += b15); b9 = RotlXor(b9, ROTATION_1_0, b0 += b9); b13 = RotlXor(b13, ROTATION_1_1, b2 += b13); b11 = RotlXor(b11, ROTATION_1_2, b6 += b11); b15 = RotlXor(b15, ROTATION_1_3, b4 += b15); b7 = RotlXor(b7, ROTATION_1_4, b10 += b7); b3 = RotlXor(b3, ROTATION_1_5, b12 += b3); b5 = RotlXor(b5, ROTATION_1_6, b14 += b5); b1 = RotlXor(b1, ROTATION_1_7, b8 += b1); b7 = RotlXor(b7, ROTATION_2_0, b0 += b7); b5 = RotlXor(b5, ROTATION_2_1, b2 += b5); b3 = RotlXor(b3, ROTATION_2_2, b4 += b3); b1 = RotlXor(b1, ROTATION_2_3, b6 += b1); b15 = RotlXor(b15, ROTATION_2_4, b12 += b15); b13 = RotlXor(b13, ROTATION_2_5, b14 += b13); b11 = RotlXor(b11, ROTATION_2_6, b8 += b11); b9 = RotlXor(b9, ROTATION_2_7, b10 += b9); b15 = RotlXor(b15, ROTATION_3_0, b0 += b15); b11 = RotlXor(b11, ROTATION_3_1, b2 += b11); b13 = RotlXor(b13, ROTATION_3_2, b6 += b13); b9 = RotlXor(b9, ROTATION_3_3, b4 += b9); b1 = RotlXor(b1, ROTATION_3_4, b14 += b1); b5 = RotlXor(b5, ROTATION_3_5, b8 += b5); b3 = RotlXor(b3, ROTATION_3_6, b10 += b3); b7 = RotlXor(b7, ROTATION_3_7, b12 += b7); /* * Subkey injection for first 4 rounds. */ b0 += kw[dm17]; b1 += kw[dm17 + 1]; b2 += kw[dm17 + 2]; b3 += kw[dm17 + 3]; b4 += kw[dm17 + 4]; b5 += kw[dm17 + 5]; b6 += kw[dm17 + 6]; b7 += kw[dm17 + 7]; b8 += kw[dm17 + 8]; b9 += kw[dm17 + 9]; b10 += kw[dm17 + 10]; b11 += kw[dm17 + 11]; b12 += kw[dm17 + 12]; b13 += kw[dm17 + 13] + t[dm3]; b14 += kw[dm17 + 14] + t[dm3 + 1]; b15 += kw[dm17 + 15] + (uint)d; /* * 4 more rounds of mix/permute */ b1 = RotlXor(b1, ROTATION_4_0, b0 += b1); b3 = RotlXor(b3, ROTATION_4_1, b2 += b3); b5 = RotlXor(b5, ROTATION_4_2, b4 += b5); b7 = RotlXor(b7, ROTATION_4_3, b6 += b7); b9 = RotlXor(b9, ROTATION_4_4, b8 += b9); b11 = RotlXor(b11, ROTATION_4_5, b10 += b11); b13 = RotlXor(b13, ROTATION_4_6, b12 += b13); b15 = RotlXor(b15, ROTATION_4_7, b14 += b15); b9 = RotlXor(b9, ROTATION_5_0, b0 += b9); b13 = RotlXor(b13, ROTATION_5_1, b2 += b13); b11 = RotlXor(b11, ROTATION_5_2, b6 += b11); b15 = RotlXor(b15, ROTATION_5_3, b4 += b15); b7 = RotlXor(b7, ROTATION_5_4, b10 += b7); b3 = RotlXor(b3, ROTATION_5_5, b12 += b3); b5 = RotlXor(b5, ROTATION_5_6, b14 += b5); b1 = RotlXor(b1, ROTATION_5_7, b8 += b1); b7 = RotlXor(b7, ROTATION_6_0, b0 += b7); b5 = RotlXor(b5, ROTATION_6_1, b2 += b5); b3 = RotlXor(b3, ROTATION_6_2, b4 += b3); b1 = RotlXor(b1, ROTATION_6_3, b6 += b1); b15 = RotlXor(b15, ROTATION_6_4, b12 += b15); b13 = RotlXor(b13, ROTATION_6_5, b14 += b13); b11 = RotlXor(b11, ROTATION_6_6, b8 += b11); b9 = RotlXor(b9, ROTATION_6_7, b10 += b9); b15 = RotlXor(b15, ROTATION_7_0, b0 += b15); b11 = RotlXor(b11, ROTATION_7_1, b2 += b11); b13 = RotlXor(b13, ROTATION_7_2, b6 += b13); b9 = RotlXor(b9, ROTATION_7_3, b4 += b9); b1 = RotlXor(b1, ROTATION_7_4, b14 += b1); b5 = RotlXor(b5, ROTATION_7_5, b8 += b5); b3 = RotlXor(b3, ROTATION_7_6, b10 += b3); b7 = RotlXor(b7, ROTATION_7_7, b12 += b7); /* * Subkey injection for next 4 rounds. */ b0 += kw[dm17 + 1]; b1 += kw[dm17 + 2]; b2 += kw[dm17 + 3]; b3 += kw[dm17 + 4]; b4 += kw[dm17 + 5]; b5 += kw[dm17 + 6]; b6 += kw[dm17 + 7]; b7 += kw[dm17 + 8]; b8 += kw[dm17 + 9]; b9 += kw[dm17 + 10]; b10 += kw[dm17 + 11]; b11 += kw[dm17 + 12]; b12 += kw[dm17 + 13]; b13 += kw[dm17 + 14] + t[dm3 + 1]; b14 += kw[dm17 + 15] + t[dm3 + 2]; b15 += kw[dm17 + 16] + (uint)d + 1; } /* * Output cipher state. */ outWords[0] = b0; outWords[1] = b1; outWords[2] = b2; outWords[3] = b3; outWords[4] = b4; outWords[5] = b5; outWords[6] = b6; outWords[7] = b7; outWords[8] = b8; outWords[9] = b9; outWords[10] = b10; outWords[11] = b11; outWords[12] = b12; outWords[13] = b13; outWords[14] = b14; outWords[15] = b15; } internal override void DecryptBlock(ulong[] block, ulong[] state) { ulong[] kw = this.kw; ulong[] t = this.t; int[] mod17 = MOD17; int[] mod3 = MOD3; /* Help the JIT avoid index bounds checks */ if (kw.Length != 33) { throw new ArgumentException(); } if (t.Length != 5) { throw new ArgumentException(); } ulong b0 = block[0]; ulong b1 = block[1]; ulong b2 = block[2]; ulong b3 = block[3]; ulong b4 = block[4]; ulong b5 = block[5]; ulong b6 = block[6]; ulong b7 = block[7]; ulong b8 = block[8]; ulong b9 = block[9]; ulong b10 = block[10]; ulong b11 = block[11]; ulong b12 = block[12]; ulong b13 = block[13]; ulong b14 = block[14]; ulong b15 = block[15]; for (int d = (ROUNDS_1024 / 4) - 1; d >= 1; d -= 2) { int dm17 = mod17[d]; int dm3 = mod3[d]; /* Reverse key injection for second 4 rounds */ b0 -= kw[dm17 + 1]; b1 -= kw[dm17 + 2]; b2 -= kw[dm17 + 3]; b3 -= kw[dm17 + 4]; b4 -= kw[dm17 + 5]; b5 -= kw[dm17 + 6]; b6 -= kw[dm17 + 7]; b7 -= kw[dm17 + 8]; b8 -= kw[dm17 + 9]; b9 -= kw[dm17 + 10]; b10 -= kw[dm17 + 11]; b11 -= kw[dm17 + 12]; b12 -= kw[dm17 + 13]; b13 -= kw[dm17 + 14] + t[dm3 + 1]; b14 -= kw[dm17 + 15] + t[dm3 + 2]; b15 -= kw[dm17 + 16] + (uint)d + 1; /* Reverse second 4 mix/permute rounds */ b15 = XorRotr(b15, ROTATION_7_0, b0); b0 -= b15; b11 = XorRotr(b11, ROTATION_7_1, b2); b2 -= b11; b13 = XorRotr(b13, ROTATION_7_2, b6); b6 -= b13; b9 = XorRotr(b9, ROTATION_7_3, b4); b4 -= b9; b1 = XorRotr(b1, ROTATION_7_4, b14); b14 -= b1; b5 = XorRotr(b5, ROTATION_7_5, b8); b8 -= b5; b3 = XorRotr(b3, ROTATION_7_6, b10); b10 -= b3; b7 = XorRotr(b7, ROTATION_7_7, b12); b12 -= b7; b7 = XorRotr(b7, ROTATION_6_0, b0); b0 -= b7; b5 = XorRotr(b5, ROTATION_6_1, b2); b2 -= b5; b3 = XorRotr(b3, ROTATION_6_2, b4); b4 -= b3; b1 = XorRotr(b1, ROTATION_6_3, b6); b6 -= b1; b15 = XorRotr(b15, ROTATION_6_4, b12); b12 -= b15; b13 = XorRotr(b13, ROTATION_6_5, b14); b14 -= b13; b11 = XorRotr(b11, ROTATION_6_6, b8); b8 -= b11; b9 = XorRotr(b9, ROTATION_6_7, b10); b10 -= b9; b9 = XorRotr(b9, ROTATION_5_0, b0); b0 -= b9; b13 = XorRotr(b13, ROTATION_5_1, b2); b2 -= b13; b11 = XorRotr(b11, ROTATION_5_2, b6); b6 -= b11; b15 = XorRotr(b15, ROTATION_5_3, b4); b4 -= b15; b7 = XorRotr(b7, ROTATION_5_4, b10); b10 -= b7; b3 = XorRotr(b3, ROTATION_5_5, b12); b12 -= b3; b5 = XorRotr(b5, ROTATION_5_6, b14); b14 -= b5; b1 = XorRotr(b1, ROTATION_5_7, b8); b8 -= b1; b1 = XorRotr(b1, ROTATION_4_0, b0); b0 -= b1; b3 = XorRotr(b3, ROTATION_4_1, b2); b2 -= b3; b5 = XorRotr(b5, ROTATION_4_2, b4); b4 -= b5; b7 = XorRotr(b7, ROTATION_4_3, b6); b6 -= b7; b9 = XorRotr(b9, ROTATION_4_4, b8); b8 -= b9; b11 = XorRotr(b11, ROTATION_4_5, b10); b10 -= b11; b13 = XorRotr(b13, ROTATION_4_6, b12); b12 -= b13; b15 = XorRotr(b15, ROTATION_4_7, b14); b14 -= b15; /* Reverse key injection for first 4 rounds */ b0 -= kw[dm17]; b1 -= kw[dm17 + 1]; b2 -= kw[dm17 + 2]; b3 -= kw[dm17 + 3]; b4 -= kw[dm17 + 4]; b5 -= kw[dm17 + 5]; b6 -= kw[dm17 + 6]; b7 -= kw[dm17 + 7]; b8 -= kw[dm17 + 8]; b9 -= kw[dm17 + 9]; b10 -= kw[dm17 + 10]; b11 -= kw[dm17 + 11]; b12 -= kw[dm17 + 12]; b13 -= kw[dm17 + 13] + t[dm3]; b14 -= kw[dm17 + 14] + t[dm3 + 1]; b15 -= kw[dm17 + 15] + (uint)d; /* Reverse first 4 mix/permute rounds */ b15 = XorRotr(b15, ROTATION_3_0, b0); b0 -= b15; b11 = XorRotr(b11, ROTATION_3_1, b2); b2 -= b11; b13 = XorRotr(b13, ROTATION_3_2, b6); b6 -= b13; b9 = XorRotr(b9, ROTATION_3_3, b4); b4 -= b9; b1 = XorRotr(b1, ROTATION_3_4, b14); b14 -= b1; b5 = XorRotr(b5, ROTATION_3_5, b8); b8 -= b5; b3 = XorRotr(b3, ROTATION_3_6, b10); b10 -= b3; b7 = XorRotr(b7, ROTATION_3_7, b12); b12 -= b7; b7 = XorRotr(b7, ROTATION_2_0, b0); b0 -= b7; b5 = XorRotr(b5, ROTATION_2_1, b2); b2 -= b5; b3 = XorRotr(b3, ROTATION_2_2, b4); b4 -= b3; b1 = XorRotr(b1, ROTATION_2_3, b6); b6 -= b1; b15 = XorRotr(b15, ROTATION_2_4, b12); b12 -= b15; b13 = XorRotr(b13, ROTATION_2_5, b14); b14 -= b13; b11 = XorRotr(b11, ROTATION_2_6, b8); b8 -= b11; b9 = XorRotr(b9, ROTATION_2_7, b10); b10 -= b9; b9 = XorRotr(b9, ROTATION_1_0, b0); b0 -= b9; b13 = XorRotr(b13, ROTATION_1_1, b2); b2 -= b13; b11 = XorRotr(b11, ROTATION_1_2, b6); b6 -= b11; b15 = XorRotr(b15, ROTATION_1_3, b4); b4 -= b15; b7 = XorRotr(b7, ROTATION_1_4, b10); b10 -= b7; b3 = XorRotr(b3, ROTATION_1_5, b12); b12 -= b3; b5 = XorRotr(b5, ROTATION_1_6, b14); b14 -= b5; b1 = XorRotr(b1, ROTATION_1_7, b8); b8 -= b1; b1 = XorRotr(b1, ROTATION_0_0, b0); b0 -= b1; b3 = XorRotr(b3, ROTATION_0_1, b2); b2 -= b3; b5 = XorRotr(b5, ROTATION_0_2, b4); b4 -= b5; b7 = XorRotr(b7, ROTATION_0_3, b6); b6 -= b7; b9 = XorRotr(b9, ROTATION_0_4, b8); b8 -= b9; b11 = XorRotr(b11, ROTATION_0_5, b10); b10 -= b11; b13 = XorRotr(b13, ROTATION_0_6, b12); b12 -= b13; b15 = XorRotr(b15, ROTATION_0_7, b14); b14 -= b15; } /* * First subkey uninjection. */ b0 -= kw[0]; b1 -= kw[1]; b2 -= kw[2]; b3 -= kw[3]; b4 -= kw[4]; b5 -= kw[5]; b6 -= kw[6]; b7 -= kw[7]; b8 -= kw[8]; b9 -= kw[9]; b10 -= kw[10]; b11 -= kw[11]; b12 -= kw[12]; b13 -= kw[13] + t[0]; b14 -= kw[14] + t[1]; b15 -= kw[15]; /* * Output cipher state. */ state[0] = b0; state[1] = b1; state[2] = b2; state[3] = b3; state[4] = b4; state[5] = b5; state[6] = b6; state[7] = b7; state[8] = b8; state[9] = b9; state[10] = b10; state[11] = b11; state[12] = b12; state[13] = b13; state[14] = b14; state[15] = b15; } } } } #pragma warning restore #endif