上海虹口龙之梦项目
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

535 lines
20 KiB

#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
#pragma warning disable
using System;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Utilities;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities;
namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Digests
{
/* The BLAKE2 cryptographic hash function was designed by Jean-
Philippe Aumasson, Samuel Neves, Zooko Wilcox-O'Hearn, and Christian
Winnerlein.
Reference Implementation and Description can be found at: https://blake2.net/
Internet Draft: https://tools.ietf.org/html/draft-saarinen-blake2-02
This implementation does not support the Tree Hashing Mode.
For unkeyed hashing, developers adapting BLAKE2 to ASN.1 - based
message formats SHOULD use the OID tree at x = 1.3.6.1.4.1.1722.12.2.
Algorithm | Target | Collision | Hash | Hash ASN.1 |
Identifier | Arch | Security | nn | OID Suffix |
---------------+--------+-----------+------+------------+
id-blake2b160 | 64-bit | 2**80 | 20 | x.1.20 |
id-blake2b256 | 64-bit | 2**128 | 32 | x.1.32 |
id-blake2b384 | 64-bit | 2**192 | 48 | x.1.48 |
id-blake2b512 | 64-bit | 2**256 | 64 | x.1.64 |
---------------+--------+-----------+------+------------+
*/
/**
* Implementation of the cryptographic hash function Blakbe2b.
* <p>
* Blake2b offers a built-in keying mechanism to be used directly
* for authentication ("Prefix-MAC") rather than a HMAC construction.
* <p>
* Blake2b offers a built-in support for a salt for randomized hashing
* and a personal string for defining a unique hash function for each application.
* <p>
* BLAKE2b is optimized for 64-bit platforms and produces digests of any size
* between 1 and 64 bytes.
*/
public class Blake2bDigest
: IDigest
{
// Blake2b Initialization Vector:
private static readonly ulong[] blake2b_IV =
// Produced from the square root of primes 2, 3, 5, 7, 11, 13, 17, 19.
// The same as SHA-512 IV.
{
0x6a09e667f3bcc908UL, 0xbb67ae8584caa73bUL, 0x3c6ef372fe94f82bUL,
0xa54ff53a5f1d36f1UL, 0x510e527fade682d1UL, 0x9b05688c2b3e6c1fUL,
0x1f83d9abfb41bd6bUL, 0x5be0cd19137e2179UL
};
// Message word permutations:
private static readonly byte[,] blake2b_sigma =
{
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }
};
private const int ROUNDS = 12; // to use for Catenas H'
private const int BLOCK_LENGTH_BYTES = 128;// bytes
// General parameters:
private int digestLength = 64; // 1- 64 bytes
private int keyLength = 0; // 0 - 64 bytes for keyed hashing for MAC
private byte[] salt = null;// new byte[16];
private byte[] personalization = null;// new byte[16];
// the key
private byte[] key = null;
// Tree hashing parameters:
// Because this class does not implement the Tree Hashing Mode,
// these parameters can be treated as constants (see init() function)
/*
* private int fanout = 1; // 0-255 private int depth = 1; // 1 - 255
* private int leafLength= 0; private long nodeOffset = 0L; private int
* nodeDepth = 0; private int innerHashLength = 0;
*/
// whenever this buffer overflows, it will be processed
// in the Compress() function.
// For performance issues, long messages will not use this buffer.
private byte[] buffer = null;// new byte[BLOCK_LENGTH_BYTES];
// Position of last inserted byte:
private int bufferPos = 0;// a value from 0 up to 128
private ulong[] internalState = new ulong[16]; // In the Blake2b paper it is
// called: v
private ulong[] chainValue = null; // state vector, in the Blake2b paper it
// is called: h
private ulong t0 = 0UL; // holds last significant bits, counter (counts bytes)
private ulong t1 = 0UL; // counter: Length up to 2^128 are supported
private ulong f0 = 0UL; // finalization flag, for last block: ~0L
// For Tree Hashing Mode, not used here:
// private long f1 = 0L; // finalization flag, for last node: ~0L
public Blake2bDigest()
: this(512)
{
}
public Blake2bDigest(Blake2bDigest digest)
{
this.bufferPos = digest.bufferPos;
this.buffer = Arrays.Clone(digest.buffer);
this.keyLength = digest.keyLength;
this.key = Arrays.Clone(digest.key);
this.digestLength = digest.digestLength;
this.chainValue = Arrays.Clone(digest.chainValue);
this.personalization = Arrays.Clone(digest.personalization);
this.salt = Arrays.Clone(digest.salt);
this.t0 = digest.t0;
this.t1 = digest.t1;
this.f0 = digest.f0;
}
/**
* Basic sized constructor - size in bits.
*
* @param digestSize size of the digest in bits
*/
public Blake2bDigest(int digestSize)
{
if (digestSize < 8 || digestSize > 512 || digestSize % 8 != 0)
throw new ArgumentException("BLAKE2b digest bit length must be a multiple of 8 and not greater than 512");
buffer = new byte[BLOCK_LENGTH_BYTES];
keyLength = 0;
this.digestLength = digestSize / 8;
Init();
}
/**
* Blake2b for authentication ("Prefix-MAC mode").
* After calling the doFinal() method, the key will
* remain to be used for further computations of
* this instance.
* The key can be overwritten using the clearKey() method.
*
* @param key A key up to 64 bytes or null
*/
public Blake2bDigest(byte[] key)
{
buffer = new byte[BLOCK_LENGTH_BYTES];
if (key != null)
{
this.key = new byte[key.Length];
Array.Copy(key, 0, this.key, 0, key.Length);
if (key.Length > 64)
throw new ArgumentException("Keys > 64 are not supported");
keyLength = key.Length;
Array.Copy(key, 0, buffer, 0, key.Length);
bufferPos = BLOCK_LENGTH_BYTES; // zero padding
}
digestLength = 64;
Init();
}
/**
* Blake2b with key, required digest length (in bytes), salt and personalization.
* After calling the doFinal() method, the key, the salt and the personal string
* will remain and might be used for further computations with this instance.
* The key can be overwritten using the clearKey() method, the salt (pepper)
* can be overwritten using the clearSalt() method.
*
* @param key A key up to 64 bytes or null
* @param digestLength from 1 up to 64 bytes
* @param salt 16 bytes or null
* @param personalization 16 bytes or null
*/
public Blake2bDigest(byte[] key, int digestLength, byte[] salt, byte[] personalization)
{
if (digestLength < 1 || digestLength > 64)
throw new ArgumentException("Invalid digest length (required: 1 - 64)");
this.digestLength = digestLength;
this.buffer = new byte[BLOCK_LENGTH_BYTES];
if (salt != null)
{
if (salt.Length != 16)
throw new ArgumentException("salt length must be exactly 16 bytes");
this.salt = new byte[16];
Array.Copy(salt, 0, this.salt, 0, salt.Length);
}
if (personalization != null)
{
if (personalization.Length != 16)
throw new ArgumentException("personalization length must be exactly 16 bytes");
this.personalization = new byte[16];
Array.Copy(personalization, 0, this.personalization, 0, personalization.Length);
}
if (key != null)
{
if (key.Length > 64)
throw new ArgumentException("Keys > 64 are not supported");
this.key = new byte[key.Length];
Array.Copy(key, 0, this.key, 0, key.Length);
keyLength = key.Length;
Array.Copy(key, 0, buffer, 0, key.Length);
bufferPos = BLOCK_LENGTH_BYTES; // zero padding
}
Init();
}
// initialize chainValue
private void Init()
{
if (chainValue == null)
{
chainValue = new ulong[8];
chainValue[0] = blake2b_IV[0] ^ (ulong)(digestLength | (keyLength << 8) | 0x1010000);
// 0x1010000 = ((fanout << 16) | (depth << 24) | (leafLength <<
// 32));
// with fanout = 1; depth = 0; leafLength = 0;
chainValue[1] = blake2b_IV[1];// ^ nodeOffset; with nodeOffset = 0;
chainValue[2] = blake2b_IV[2];// ^ ( nodeDepth | (innerHashLength << 8) );
// with nodeDepth = 0; innerHashLength = 0;
chainValue[3] = blake2b_IV[3];
chainValue[4] = blake2b_IV[4];
chainValue[5] = blake2b_IV[5];
if (salt != null)
{
chainValue[4] ^= Pack.LE_To_UInt64(salt, 0);
chainValue[5] ^= Pack.LE_To_UInt64(salt, 8);
}
chainValue[6] = blake2b_IV[6];
chainValue[7] = blake2b_IV[7];
if (personalization != null)
{
chainValue[6] ^= Pack.LE_To_UInt64(personalization, 0);
chainValue[7] ^= Pack.LE_To_UInt64(personalization, 8);
}
}
}
private void InitializeInternalState()
{
// initialize v:
Array.Copy(chainValue, 0, internalState, 0, chainValue.Length);
Array.Copy(blake2b_IV, 0, internalState, chainValue.Length, 4);
internalState[12] = t0 ^ blake2b_IV[4];
internalState[13] = t1 ^ blake2b_IV[5];
internalState[14] = f0 ^ blake2b_IV[6];
internalState[15] = blake2b_IV[7];// ^ f1 with f1 = 0
}
/**
* update the message digest with a single byte.
*
* @param b the input byte to be entered.
*/
public virtual void Update(byte b)
{
int remainingLength = 0; // left bytes of buffer
// process the buffer if full else add to buffer:
remainingLength = BLOCK_LENGTH_BYTES - bufferPos;
if (remainingLength == 0)
{ // full buffer
t0 += BLOCK_LENGTH_BYTES;
if (t0 == 0)
{ // if message > 2^64
t1++;
}
Compress(buffer, 0);
Array.Clear(buffer, 0, buffer.Length);// clear buffer
buffer[0] = b;
bufferPos = 1;
}
else
{
buffer[bufferPos] = b;
bufferPos++;
return;
}
}
/**
* update the message digest with a block of bytes.
*
* @param message the byte array containing the data.
* @param offset the offset into the byte array where the data starts.
* @param len the length of the data.
*/
public virtual void BlockUpdate(byte[] message, int offset, int len)
{
if (message == null || len == 0)
return;
int remainingLength = 0; // left bytes of buffer
if (bufferPos != 0)
{ // commenced, incomplete buffer
// complete the buffer:
remainingLength = BLOCK_LENGTH_BYTES - bufferPos;
if (remainingLength < len)
{ // full buffer + at least 1 byte
Array.Copy(message, offset, buffer, bufferPos,
remainingLength);
t0 += BLOCK_LENGTH_BYTES;
if (t0 == 0)
{ // if message > 2^64
t1++;
}
Compress(buffer, 0);
bufferPos = 0;
Array.Clear(buffer, 0, buffer.Length);// clear buffer
}
else
{
Array.Copy(message, offset, buffer, bufferPos, len);
bufferPos += len;
return;
}
}
// process blocks except last block (also if last block is full)
int messagePos;
int blockWiseLastPos = offset + len - BLOCK_LENGTH_BYTES;
for (messagePos = offset + remainingLength; messagePos < blockWiseLastPos; messagePos += BLOCK_LENGTH_BYTES)
{ // block wise 128 bytes
// without buffer:
t0 += BLOCK_LENGTH_BYTES;
if (t0 == 0)
{
t1++;
}
Compress(message, messagePos);
}
// fill the buffer with left bytes, this might be a full block
Array.Copy(message, messagePos, buffer, 0, offset + len
- messagePos);
bufferPos += offset + len - messagePos;
}
/**
* close the digest, producing the final digest value. The doFinal
* call leaves the digest reset.
* Key, salt and personal string remain.
*
* @param out the array the digest is to be copied into.
* @param outOffset the offset into the out array the digest is to start at.
*/
public virtual int DoFinal(byte[] output, int outOffset)
{
f0 = 0xFFFFFFFFFFFFFFFFUL;
t0 += (ulong)bufferPos;
if (bufferPos > 0 && t0 == 0)
{
t1++;
}
Compress(buffer, 0);
Array.Clear(buffer, 0, buffer.Length);// Holds eventually the key if input is null
Array.Clear(internalState, 0, internalState.Length);
for (int i = 0; i < chainValue.Length && (i * 8 < digestLength); i++)
{
byte[] bytes = Pack.UInt64_To_LE(chainValue[i]);
if (i * 8 < digestLength - 8)
{
Array.Copy(bytes, 0, output, outOffset + i * 8, 8);
}
else
{
Array.Copy(bytes, 0, output, outOffset + i * 8, digestLength - (i * 8));
}
}
Array.Clear(chainValue, 0, chainValue.Length);
Reset();
return digestLength;
}
/**
* Reset the digest back to it's initial state.
* The key, the salt and the personal string will
* remain for further computations.
*/
public virtual void Reset()
{
bufferPos = 0;
f0 = 0L;
t0 = 0L;
t1 = 0L;
chainValue = null;
Array.Clear(buffer, 0, buffer.Length);
if (key != null)
{
Array.Copy(key, 0, buffer, 0, key.Length);
bufferPos = BLOCK_LENGTH_BYTES; // zero padding
}
Init();
}
private void Compress(byte[] message, int messagePos)
{
InitializeInternalState();
ulong[] m = new ulong[16];
for (int j = 0; j < 16; j++)
{
m[j] = Pack.LE_To_UInt64(message, messagePos + j * 8);
}
for (int round = 0; round < ROUNDS; round++)
{
// G apply to columns of internalState:m[blake2b_sigma[round][2 * blockPos]] /+1
G(m[blake2b_sigma[round,0]], m[blake2b_sigma[round,1]], 0, 4, 8, 12);
G(m[blake2b_sigma[round,2]], m[blake2b_sigma[round,3]], 1, 5, 9, 13);
G(m[blake2b_sigma[round,4]], m[blake2b_sigma[round,5]], 2, 6, 10, 14);
G(m[blake2b_sigma[round,6]], m[blake2b_sigma[round,7]], 3, 7, 11, 15);
// G apply to diagonals of internalState:
G(m[blake2b_sigma[round,8]], m[blake2b_sigma[round,9]], 0, 5, 10, 15);
G(m[blake2b_sigma[round,10]], m[blake2b_sigma[round,11]], 1, 6, 11, 12);
G(m[blake2b_sigma[round,12]], m[blake2b_sigma[round,13]], 2, 7, 8, 13);
G(m[blake2b_sigma[round,14]], m[blake2b_sigma[round,15]], 3, 4, 9, 14);
}
// update chain values:
for (int offset = 0; offset < chainValue.Length; offset++)
{
chainValue[offset] = chainValue[offset] ^ internalState[offset] ^ internalState[offset + 8];
}
}
private void G(ulong m1, ulong m2, int posA, int posB, int posC, int posD)
{
internalState[posA] = internalState[posA] + internalState[posB] + m1;
internalState[posD] = Rotr64(internalState[posD] ^ internalState[posA], 32);
internalState[posC] = internalState[posC] + internalState[posD];
internalState[posB] = Rotr64(internalState[posB] ^ internalState[posC], 24); // replaces 25 of BLAKE
internalState[posA] = internalState[posA] + internalState[posB] + m2;
internalState[posD] = Rotr64(internalState[posD] ^ internalState[posA], 16);
internalState[posC] = internalState[posC] + internalState[posD];
internalState[posB] = Rotr64(internalState[posB] ^ internalState[posC], 63); // replaces 11 of BLAKE
}
private static ulong Rotr64(ulong x, int rot)
{
return x >> rot | x << -rot;
}
/**
* return the algorithm name
*
* @return the algorithm name
*/
public virtual string AlgorithmName
{
get { return "BLAKE2b"; }
}
/**
* return the size, in bytes, of the digest produced by this message digest.
*
* @return the size, in bytes, of the digest produced by this message digest.
*/
public virtual int GetDigestSize()
{
return digestLength;
}
/**
* Return the size in bytes of the internal buffer the digest applies it's compression
* function to.
*
* @return byte length of the digests internal buffer.
*/
public virtual int GetByteLength()
{
return BLOCK_LENGTH_BYTES;
}
/**
* Overwrite the key
* if it is no longer used (zeroization)
*/
public virtual void ClearKey()
{
if (key != null)
{
Array.Clear(key, 0, key.Length);
Array.Clear(buffer, 0, buffer.Length);
}
}
/**
* Overwrite the salt (pepper) if it
* is secret and no longer used (zeroization)
*/
public virtual void ClearSalt()
{
if (salt != null)
{
Array.Clear(salt, 0, salt.Length);
}
}
}
}
#pragma warning restore
#endif