上海虹口龙之梦项目
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

499 lines
22 KiB

#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
#pragma warning disable
using System;
using System.Diagnostics;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Utilities;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities;
namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Engines
{
/**
* an implementation of the AES (Rijndael), from FIPS-197.
* <p>
* For further details see: <a href="http://csrc.nist.gov/encryption/aes/">http://csrc.nist.gov/encryption/aes/</a>.
*
* This implementation is based on optimizations from Dr. Brian Gladman's paper and C code at
* <a href="http://fp.gladman.plus.com/cryptography_technology/rijndael/">http://fp.gladman.plus.com/cryptography_technology/rijndael/</a>
*
* There are three levels of tradeoff of speed vs memory
* Because java has no preprocessor, they are written as three separate classes from which to choose
*
* The fastest uses 8Kbytes of static tables to precompute round calculations, 4 256 word tables for encryption
* and 4 for decryption.
*
* The middle performance version uses only one 256 word table for each, for a total of 2Kbytes,
* adding 12 rotate operations per round to compute the values contained in the other tables from
* the contents of the first
*
* The slowest version uses no static tables at all and computes the values
* in each round.
* </p>
* <p>
* This file contains the slowest performance version with no static tables
* for round precomputation, but it has the smallest foot print.
* </p>
*/
public class AesLightEngine
: IBlockCipher
{
// The S box
private static readonly byte[] S =
{
99, 124, 119, 123, 242, 107, 111, 197,
48, 1, 103, 43, 254, 215, 171, 118,
202, 130, 201, 125, 250, 89, 71, 240,
173, 212, 162, 175, 156, 164, 114, 192,
183, 253, 147, 38, 54, 63, 247, 204,
52, 165, 229, 241, 113, 216, 49, 21,
4, 199, 35, 195, 24, 150, 5, 154,
7, 18, 128, 226, 235, 39, 178, 117,
9, 131, 44, 26, 27, 110, 90, 160,
82, 59, 214, 179, 41, 227, 47, 132,
83, 209, 0, 237, 32, 252, 177, 91,
106, 203, 190, 57, 74, 76, 88, 207,
208, 239, 170, 251, 67, 77, 51, 133,
69, 249, 2, 127, 80, 60, 159, 168,
81, 163, 64, 143, 146, 157, 56, 245,
188, 182, 218, 33, 16, 255, 243, 210,
205, 12, 19, 236, 95, 151, 68, 23,
196, 167, 126, 61, 100, 93, 25, 115,
96, 129, 79, 220, 34, 42, 144, 136,
70, 238, 184, 20, 222, 94, 11, 219,
224, 50, 58, 10, 73, 6, 36, 92,
194, 211, 172, 98, 145, 149, 228, 121,
231, 200, 55, 109, 141, 213, 78, 169,
108, 86, 244, 234, 101, 122, 174, 8,
186, 120, 37, 46, 28, 166, 180, 198,
232, 221, 116, 31, 75, 189, 139, 138,
112, 62, 181, 102, 72, 3, 246, 14,
97, 53, 87, 185, 134, 193, 29, 158,
225, 248, 152, 17, 105, 217, 142, 148,
155, 30, 135, 233, 206, 85, 40, 223,
140, 161, 137, 13, 191, 230, 66, 104,
65, 153, 45, 15, 176, 84, 187, 22,
};
// The inverse S-box
private static readonly byte[] Si =
{
82, 9, 106, 213, 48, 54, 165, 56,
191, 64, 163, 158, 129, 243, 215, 251,
124, 227, 57, 130, 155, 47, 255, 135,
52, 142, 67, 68, 196, 222, 233, 203,
84, 123, 148, 50, 166, 194, 35, 61,
238, 76, 149, 11, 66, 250, 195, 78,
8, 46, 161, 102, 40, 217, 36, 178,
118, 91, 162, 73, 109, 139, 209, 37,
114, 248, 246, 100, 134, 104, 152, 22,
212, 164, 92, 204, 93, 101, 182, 146,
108, 112, 72, 80, 253, 237, 185, 218,
94, 21, 70, 87, 167, 141, 157, 132,
144, 216, 171, 0, 140, 188, 211, 10,
247, 228, 88, 5, 184, 179, 69, 6,
208, 44, 30, 143, 202, 63, 15, 2,
193, 175, 189, 3, 1, 19, 138, 107,
58, 145, 17, 65, 79, 103, 220, 234,
151, 242, 207, 206, 240, 180, 230, 115,
150, 172, 116, 34, 231, 173, 53, 133,
226, 249, 55, 232, 28, 117, 223, 110,
71, 241, 26, 113, 29, 41, 197, 137,
111, 183, 98, 14, 170, 24, 190, 27,
252, 86, 62, 75, 198, 210, 121, 32,
154, 219, 192, 254, 120, 205, 90, 244,
31, 221, 168, 51, 136, 7, 199, 49,
177, 18, 16, 89, 39, 128, 236, 95,
96, 81, 127, 169, 25, 181, 74, 13,
45, 229, 122, 159, 147, 201, 156, 239,
160, 224, 59, 77, 174, 42, 245, 176,
200, 235, 187, 60, 131, 83, 153, 97,
23, 43, 4, 126, 186, 119, 214, 38,
225, 105, 20, 99, 85, 33, 12, 125,
};
// vector used in calculating key schedule (powers of x in GF(256))
private static readonly byte[] rcon =
{
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91
};
private static uint Shift(uint r, int shift)
{
return (r >> shift) | (r << (32 - shift));
}
/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
private const uint m1 = 0x80808080;
private const uint m2 = 0x7f7f7f7f;
private const uint m3 = 0x0000001b;
private const uint m4 = 0xC0C0C0C0;
private const uint m5 = 0x3f3f3f3f;
private static uint FFmulX(uint x)
{
return ((x & m2) << 1) ^ (((x & m1) >> 7) * m3);
}
private static uint FFmulX2(uint x)
{
uint t0 = (x & m5) << 2;
uint t1 = (x & m4);
t1 ^= (t1 >> 1);
return t0 ^ (t1 >> 2) ^ (t1 >> 5);
}
/*
The following defines provide alternative definitions of FFmulX that might
give improved performance if a fast 32-bit multiply is not available.
private int FFmulX(int x) { int u = x & m1; u |= (u >> 1); return ((x & m2) << 1) ^ ((u >>> 3) | (u >>> 6)); }
private static final int m4 = 0x1b1b1b1b;
private int FFmulX(int x) { int u = x & m1; return ((x & m2) << 1) ^ ((u - (u >>> 7)) & m4); }
*/
private static uint Mcol(uint x)
{
uint t0, t1;
t0 = Shift(x, 8);
t1 = x ^ t0;
return Shift(t1, 16) ^ t0 ^ FFmulX(t1);
}
private static uint Inv_Mcol(uint x)
{
uint t0, t1;
t0 = x;
t1 = t0 ^ Shift(t0, 8);
t0 ^= FFmulX(t1);
t1 ^= FFmulX2(t0);
t0 ^= t1 ^ Shift(t1, 16);
return t0;
}
private static uint SubWord(uint x)
{
return (uint)S[x&255]
| (((uint)S[(x>>8)&255]) << 8)
| (((uint)S[(x>>16)&255]) << 16)
| (((uint)S[(x>>24)&255]) << 24);
}
/**
* Calculate the necessary round keys
* The number of calculations depends on key size and block size
* AES specified a fixed block size of 128 bits and key sizes 128/192/256 bits
* This code is written assuming those are the only possible values
*/
private uint[][] GenerateWorkingKey(byte[] key, bool forEncryption)
{
int keyLen = key.Length;
if (keyLen < 16 || keyLen > 32 || (keyLen & 7) != 0)
throw new ArgumentException("Key length not 128/192/256 bits.");
int KC = keyLen >> 2;
this.ROUNDS = KC + 6; // This is not always true for the generalized Rijndael that allows larger block sizes
uint[][] W = new uint[ROUNDS + 1][]; // 4 words in a block
for (int i = 0; i <= ROUNDS; ++i)
{
W[i] = new uint[4];
}
switch (KC)
{
case 4:
{
uint t0 = Pack.LE_To_UInt32(key, 0); W[0][0] = t0;
uint t1 = Pack.LE_To_UInt32(key, 4); W[0][1] = t1;
uint t2 = Pack.LE_To_UInt32(key, 8); W[0][2] = t2;
uint t3 = Pack.LE_To_UInt32(key, 12); W[0][3] = t3;
for (int i = 1; i <= 10; ++i)
{
uint u = SubWord(Shift(t3, 8)) ^ rcon[i - 1];
t0 ^= u; W[i][0] = t0;
t1 ^= t0; W[i][1] = t1;
t2 ^= t1; W[i][2] = t2;
t3 ^= t2; W[i][3] = t3;
}
break;
}
case 6:
{
uint t0 = Pack.LE_To_UInt32(key, 0); W[0][0] = t0;
uint t1 = Pack.LE_To_UInt32(key, 4); W[0][1] = t1;
uint t2 = Pack.LE_To_UInt32(key, 8); W[0][2] = t2;
uint t3 = Pack.LE_To_UInt32(key, 12); W[0][3] = t3;
uint t4 = Pack.LE_To_UInt32(key, 16); W[1][0] = t4;
uint t5 = Pack.LE_To_UInt32(key, 20); W[1][1] = t5;
uint rcon = 1;
uint u = SubWord(Shift(t5, 8)) ^ rcon; rcon <<= 1;
t0 ^= u; W[1][2] = t0;
t1 ^= t0; W[1][3] = t1;
t2 ^= t1; W[2][0] = t2;
t3 ^= t2; W[2][1] = t3;
t4 ^= t3; W[2][2] = t4;
t5 ^= t4; W[2][3] = t5;
for (int i = 3; i < 12; i += 3)
{
u = SubWord(Shift(t5, 8)) ^ rcon; rcon <<= 1;
t0 ^= u; W[i ][0] = t0;
t1 ^= t0; W[i ][1] = t1;
t2 ^= t1; W[i ][2] = t2;
t3 ^= t2; W[i ][3] = t3;
t4 ^= t3; W[i + 1][0] = t4;
t5 ^= t4; W[i + 1][1] = t5;
u = SubWord(Shift(t5, 8)) ^ rcon; rcon <<= 1;
t0 ^= u; W[i + 1][2] = t0;
t1 ^= t0; W[i + 1][3] = t1;
t2 ^= t1; W[i + 2][0] = t2;
t3 ^= t2; W[i + 2][1] = t3;
t4 ^= t3; W[i + 2][2] = t4;
t5 ^= t4; W[i + 2][3] = t5;
}
u = SubWord(Shift(t5, 8)) ^ rcon;
t0 ^= u; W[12][0] = t0;
t1 ^= t0; W[12][1] = t1;
t2 ^= t1; W[12][2] = t2;
t3 ^= t2; W[12][3] = t3;
break;
}
case 8:
{
uint t0 = Pack.LE_To_UInt32(key, 0); W[0][0] = t0;
uint t1 = Pack.LE_To_UInt32(key, 4); W[0][1] = t1;
uint t2 = Pack.LE_To_UInt32(key, 8); W[0][2] = t2;
uint t3 = Pack.LE_To_UInt32(key, 12); W[0][3] = t3;
uint t4 = Pack.LE_To_UInt32(key, 16); W[1][0] = t4;
uint t5 = Pack.LE_To_UInt32(key, 20); W[1][1] = t5;
uint t6 = Pack.LE_To_UInt32(key, 24); W[1][2] = t6;
uint t7 = Pack.LE_To_UInt32(key, 28); W[1][3] = t7;
uint u, rcon = 1;
for (int i = 2; i < 14; i += 2)
{
u = SubWord(Shift(t7, 8)) ^ rcon; rcon <<= 1;
t0 ^= u; W[i ][0] = t0;
t1 ^= t0; W[i ][1] = t1;
t2 ^= t1; W[i ][2] = t2;
t3 ^= t2; W[i ][3] = t3;
u = SubWord(t3);
t4 ^= u; W[i + 1][0] = t4;
t5 ^= t4; W[i + 1][1] = t5;
t6 ^= t5; W[i + 1][2] = t6;
t7 ^= t6; W[i + 1][3] = t7;
}
u = SubWord(Shift(t7, 8)) ^ rcon;
t0 ^= u; W[14][0] = t0;
t1 ^= t0; W[14][1] = t1;
t2 ^= t1; W[14][2] = t2;
t3 ^= t2; W[14][3] = t3;
break;
}
default:
{
throw new InvalidOperationException("Should never get here");
}
}
if (!forEncryption)
{
for (int j = 1; j < ROUNDS; j++)
{
uint[] w = W[j];
for (int i = 0; i < 4; i++)
{
w[i] = Inv_Mcol(w[i]);
}
}
}
return W;
}
private int ROUNDS;
private uint[][] WorkingKey;
private bool forEncryption;
private const int BLOCK_SIZE = 16;
/**
* default constructor - 128 bit block size.
*/
public AesLightEngine()
{
}
/**
* initialise an AES cipher.
*
* @param forEncryption whether or not we are for encryption.
* @param parameters the parameters required to set up the cipher.
* @exception ArgumentException if the parameters argument is
* inappropriate.
*/
public virtual void Init(
bool forEncryption,
ICipherParameters parameters)
{
KeyParameter keyParameter = parameters as KeyParameter;
if (keyParameter == null)
throw new ArgumentException("invalid parameter passed to AES init - "
+ BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities.Platform.GetTypeName(parameters));
WorkingKey = GenerateWorkingKey(keyParameter.GetKey(), forEncryption);
this.forEncryption = forEncryption;
}
public virtual string AlgorithmName
{
get { return "AES"; }
}
public virtual bool IsPartialBlockOkay
{
get { return false; }
}
public virtual int GetBlockSize()
{
return BLOCK_SIZE;
}
public virtual int ProcessBlock(byte[] input, int inOff, byte[] output, int outOff)
{
if (WorkingKey == null)
throw new InvalidOperationException("AES engine not initialised");
Check.DataLength(input, inOff, 16, "input buffer too short");
Check.OutputLength(output, outOff, 16, "output buffer too short");
if (forEncryption)
{
EncryptBlock(input, inOff, output, outOff, WorkingKey);
}
else
{
DecryptBlock(input, inOff, output, outOff, WorkingKey);
}
return BLOCK_SIZE;
}
public virtual void Reset()
{
}
private void EncryptBlock(byte[] input, int inOff, byte[] output, int outOff, uint[][] KW)
{
uint C0 = Pack.LE_To_UInt32(input, inOff + 0);
uint C1 = Pack.LE_To_UInt32(input, inOff + 4);
uint C2 = Pack.LE_To_UInt32(input, inOff + 8);
uint C3 = Pack.LE_To_UInt32(input, inOff + 12);
uint[] kw = KW[0];
uint t0 = C0 ^ kw[0];
uint t1 = C1 ^ kw[1];
uint t2 = C2 ^ kw[2];
uint r0, r1, r2, r3 = C3 ^ kw[3];
int r = 1;
while (r < ROUNDS - 1)
{
kw = KW[r++];
r0 = Mcol((uint)S[t0 & 255] ^ (((uint)S[(t1 >> 8) & 255]) << 8) ^ (((uint)S[(t2 >> 16) & 255]) << 16) ^ (((uint)S[(r3 >> 24) & 255]) << 24)) ^ kw[0];
r1 = Mcol((uint)S[t1 & 255] ^ (((uint)S[(t2 >> 8) & 255]) << 8) ^ (((uint)S[(r3 >> 16) & 255]) << 16) ^ (((uint)S[(t0 >> 24) & 255]) << 24)) ^ kw[1];
r2 = Mcol((uint)S[t2 & 255] ^ (((uint)S[(r3 >> 8) & 255]) << 8) ^ (((uint)S[(t0 >> 16) & 255]) << 16) ^ (((uint)S[(t1 >> 24) & 255]) << 24)) ^ kw[2];
r3 = Mcol((uint)S[r3 & 255] ^ (((uint)S[(t0 >> 8) & 255]) << 8) ^ (((uint)S[(t1 >> 16) & 255]) << 16) ^ (((uint)S[(t2 >> 24) & 255]) << 24)) ^ kw[3];
kw = KW[r++];
t0 = Mcol((uint)S[r0 & 255] ^ (((uint)S[(r1 >> 8) & 255]) << 8) ^ (((uint)S[(r2 >> 16) & 255]) << 16) ^ (((uint)S[(r3 >> 24) & 255]) << 24)) ^ kw[0];
t1 = Mcol((uint)S[r1 & 255] ^ (((uint)S[(r2 >> 8) & 255]) << 8) ^ (((uint)S[(r3 >> 16) & 255]) << 16) ^ (((uint)S[(r0 >> 24) & 255]) << 24)) ^ kw[1];
t2 = Mcol((uint)S[r2 & 255] ^ (((uint)S[(r3 >> 8) & 255]) << 8) ^ (((uint)S[(r0 >> 16) & 255]) << 16) ^ (((uint)S[(r1 >> 24) & 255]) << 24)) ^ kw[2];
r3 = Mcol((uint)S[r3 & 255] ^ (((uint)S[(r0 >> 8) & 255]) << 8) ^ (((uint)S[(r1 >> 16) & 255]) << 16) ^ (((uint)S[(r2 >> 24) & 255]) << 24)) ^ kw[3];
}
kw = KW[r++];
r0 = Mcol((uint)S[t0 & 255] ^ (((uint)S[(t1 >> 8) & 255]) << 8) ^ (((uint)S[(t2 >> 16) & 255]) << 16) ^ (((uint)S[(r3 >> 24) & 255]) << 24)) ^ kw[0];
r1 = Mcol((uint)S[t1 & 255] ^ (((uint)S[(t2 >> 8) & 255]) << 8) ^ (((uint)S[(r3 >> 16) & 255]) << 16) ^ (((uint)S[(t0 >> 24) & 255]) << 24)) ^ kw[1];
r2 = Mcol((uint)S[t2 & 255] ^ (((uint)S[(r3 >> 8) & 255]) << 8) ^ (((uint)S[(t0 >> 16) & 255]) << 16) ^ (((uint)S[(t1 >> 24) & 255]) << 24)) ^ kw[2];
r3 = Mcol((uint)S[r3 & 255] ^ (((uint)S[(t0 >> 8) & 255]) << 8) ^ (((uint)S[(t1 >> 16) & 255]) << 16) ^ (((uint)S[(t2 >> 24) & 255]) << 24)) ^ kw[3];
// the final round is a simple function of S
kw = KW[r];
C0 = (uint)S[r0 & 255] ^ (((uint)S[(r1 >> 8) & 255]) << 8) ^ (((uint)S[(r2 >> 16) & 255]) << 16) ^ (((uint)S[(r3 >> 24) & 255]) << 24) ^ kw[0];
C1 = (uint)S[r1 & 255] ^ (((uint)S[(r2 >> 8) & 255]) << 8) ^ (((uint)S[(r3 >> 16) & 255]) << 16) ^ (((uint)S[(r0 >> 24) & 255]) << 24) ^ kw[1];
C2 = (uint)S[r2 & 255] ^ (((uint)S[(r3 >> 8) & 255]) << 8) ^ (((uint)S[(r0 >> 16) & 255]) << 16) ^ (((uint)S[(r1 >> 24) & 255]) << 24) ^ kw[2];
C3 = (uint)S[r3 & 255] ^ (((uint)S[(r0 >> 8) & 255]) << 8) ^ (((uint)S[(r1 >> 16) & 255]) << 16) ^ (((uint)S[(r2 >> 24) & 255]) << 24) ^ kw[3];
Pack.UInt32_To_LE(C0, output, outOff + 0);
Pack.UInt32_To_LE(C1, output, outOff + 4);
Pack.UInt32_To_LE(C2, output, outOff + 8);
Pack.UInt32_To_LE(C3, output, outOff + 12);
}
private void DecryptBlock(byte[] input, int inOff, byte[] output, int outOff, uint[][] KW)
{
uint C0 = Pack.LE_To_UInt32(input, inOff + 0);
uint C1 = Pack.LE_To_UInt32(input, inOff + 4);
uint C2 = Pack.LE_To_UInt32(input, inOff + 8);
uint C3 = Pack.LE_To_UInt32(input, inOff + 12);
uint[] kw = KW[ROUNDS];
uint t0 = C0 ^ kw[0];
uint t1 = C1 ^ kw[1];
uint t2 = C2 ^ kw[2];
uint r0, r1, r2, r3 = C3 ^ kw[3];
int r = ROUNDS - 1;
while (r > 1)
{
kw = KW[r--];
r0 = Inv_Mcol((uint)Si[t0 & 255] ^ (((uint)Si[(r3 >> 8) & 255]) << 8) ^ (((uint)Si[(t2 >> 16) & 255]) << 16) ^ ((uint)Si[(t1 >> 24) & 255] << 24)) ^ kw[0];
r1 = Inv_Mcol((uint)Si[t1 & 255] ^ (((uint)Si[(t0 >> 8) & 255]) << 8) ^ (((uint)Si[(r3 >> 16) & 255]) << 16) ^ ((uint)Si[(t2 >> 24) & 255] << 24)) ^ kw[1];
r2 = Inv_Mcol((uint)Si[t2 & 255] ^ (((uint)Si[(t1 >> 8) & 255]) << 8) ^ (((uint)Si[(t0 >> 16) & 255]) << 16) ^ ((uint)Si[(r3 >> 24) & 255] << 24)) ^ kw[2];
r3 = Inv_Mcol((uint)Si[r3 & 255] ^ (((uint)Si[(t2 >> 8) & 255]) << 8) ^ (((uint)Si[(t1 >> 16) & 255]) << 16) ^ ((uint)Si[(t0 >> 24) & 255] << 24)) ^ kw[3];
kw = KW[r--];
t0 = Inv_Mcol((uint)Si[r0 & 255] ^ (((uint)Si[(r3 >> 8) & 255]) << 8) ^ (((uint)Si[(r2 >> 16) & 255]) << 16) ^ ((uint)Si[(r1 >> 24) & 255] << 24)) ^ kw[0];
t1 = Inv_Mcol((uint)Si[r1 & 255] ^ (((uint)Si[(r0 >> 8) & 255]) << 8) ^ (((uint)Si[(r3 >> 16) & 255]) << 16) ^ ((uint)Si[(r2 >> 24) & 255] << 24)) ^ kw[1];
t2 = Inv_Mcol((uint)Si[r2 & 255] ^ (((uint)Si[(r1 >> 8) & 255]) << 8) ^ (((uint)Si[(r0 >> 16) & 255]) << 16) ^ ((uint)Si[(r3 >> 24) & 255] << 24)) ^ kw[2];
r3 = Inv_Mcol((uint)Si[r3 & 255] ^ (((uint)Si[(r2 >> 8) & 255]) << 8) ^ (((uint)Si[(r1 >> 16) & 255]) << 16) ^ ((uint)Si[(r0 >> 24) & 255] << 24)) ^ kw[3];
}
kw = KW[1];
r0 = Inv_Mcol((uint)Si[t0 & 255] ^ (((uint)Si[(r3 >> 8) & 255]) << 8) ^ (((uint)Si[(t2 >> 16) & 255]) << 16) ^ ((uint)Si[(t1 >> 24) & 255] << 24)) ^ kw[0];
r1 = Inv_Mcol((uint)Si[t1 & 255] ^ (((uint)Si[(t0 >> 8) & 255]) << 8) ^ (((uint)Si[(r3 >> 16) & 255]) << 16) ^ ((uint)Si[(t2 >> 24) & 255] << 24)) ^ kw[1];
r2 = Inv_Mcol((uint)Si[t2 & 255] ^ (((uint)Si[(t1 >> 8) & 255]) << 8) ^ (((uint)Si[(t0 >> 16) & 255]) << 16) ^ ((uint)Si[(r3 >> 24) & 255] << 24)) ^ kw[2];
r3 = Inv_Mcol((uint)Si[r3 & 255] ^ (((uint)Si[(t2 >> 8) & 255]) << 8) ^ (((uint)Si[(t1 >> 16) & 255]) << 16) ^ ((uint)Si[(t0 >> 24) & 255] << 24)) ^ kw[3];
// the final round's table is a simple function of Si
kw = KW[0];
C0 = (uint)Si[r0 & 255] ^ (((uint)Si[(r3 >> 8) & 255]) << 8) ^ (((uint)Si[(r2 >> 16) & 255]) << 16) ^ (((uint)Si[(r1 >> 24) & 255]) << 24) ^ kw[0];
C1 = (uint)Si[r1 & 255] ^ (((uint)Si[(r0 >> 8) & 255]) << 8) ^ (((uint)Si[(r3 >> 16) & 255]) << 16) ^ (((uint)Si[(r2 >> 24) & 255]) << 24) ^ kw[1];
C2 = (uint)Si[r2 & 255] ^ (((uint)Si[(r1 >> 8) & 255]) << 8) ^ (((uint)Si[(r0 >> 16) & 255]) << 16) ^ (((uint)Si[(r3 >> 24) & 255]) << 24) ^ kw[2];
C3 = (uint)Si[r3 & 255] ^ (((uint)Si[(r2 >> 8) & 255]) << 8) ^ (((uint)Si[(r1 >> 16) & 255]) << 16) ^ (((uint)Si[(r0 >> 24) & 255]) << 24) ^ kw[3];
Pack.UInt32_To_LE(C0, output, outOff + 0);
Pack.UInt32_To_LE(C1, output, outOff + 4);
Pack.UInt32_To_LE(C2, output, outOff + 8);
Pack.UInt32_To_LE(C3, output, outOff + 12);
}
}
}
#pragma warning restore
#endif