You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2210 lines
81 KiB
2210 lines
81 KiB
#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR) |
|
#pragma warning disable |
|
using System; |
|
using System.Text; |
|
|
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities; |
|
|
|
namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC |
|
{ |
|
internal class LongArray |
|
{ |
|
//private static long DEInterleave_MASK = 0x5555555555555555L; |
|
|
|
/* |
|
* This expands 8 bit indices into 16 bit contents (high bit 14), by inserting 0s between bits. |
|
* In a binary field, this operation is the same as squaring an 8 bit number. |
|
*/ |
|
private static readonly ushort[] INTERLEAVE2_TABLE = new ushort[] |
|
{ |
|
0x0000, 0x0001, 0x0004, 0x0005, 0x0010, 0x0011, 0x0014, 0x0015, |
|
0x0040, 0x0041, 0x0044, 0x0045, 0x0050, 0x0051, 0x0054, 0x0055, |
|
0x0100, 0x0101, 0x0104, 0x0105, 0x0110, 0x0111, 0x0114, 0x0115, |
|
0x0140, 0x0141, 0x0144, 0x0145, 0x0150, 0x0151, 0x0154, 0x0155, |
|
0x0400, 0x0401, 0x0404, 0x0405, 0x0410, 0x0411, 0x0414, 0x0415, |
|
0x0440, 0x0441, 0x0444, 0x0445, 0x0450, 0x0451, 0x0454, 0x0455, |
|
0x0500, 0x0501, 0x0504, 0x0505, 0x0510, 0x0511, 0x0514, 0x0515, |
|
0x0540, 0x0541, 0x0544, 0x0545, 0x0550, 0x0551, 0x0554, 0x0555, |
|
0x1000, 0x1001, 0x1004, 0x1005, 0x1010, 0x1011, 0x1014, 0x1015, |
|
0x1040, 0x1041, 0x1044, 0x1045, 0x1050, 0x1051, 0x1054, 0x1055, |
|
0x1100, 0x1101, 0x1104, 0x1105, 0x1110, 0x1111, 0x1114, 0x1115, |
|
0x1140, 0x1141, 0x1144, 0x1145, 0x1150, 0x1151, 0x1154, 0x1155, |
|
0x1400, 0x1401, 0x1404, 0x1405, 0x1410, 0x1411, 0x1414, 0x1415, |
|
0x1440, 0x1441, 0x1444, 0x1445, 0x1450, 0x1451, 0x1454, 0x1455, |
|
0x1500, 0x1501, 0x1504, 0x1505, 0x1510, 0x1511, 0x1514, 0x1515, |
|
0x1540, 0x1541, 0x1544, 0x1545, 0x1550, 0x1551, 0x1554, 0x1555, |
|
0x4000, 0x4001, 0x4004, 0x4005, 0x4010, 0x4011, 0x4014, 0x4015, |
|
0x4040, 0x4041, 0x4044, 0x4045, 0x4050, 0x4051, 0x4054, 0x4055, |
|
0x4100, 0x4101, 0x4104, 0x4105, 0x4110, 0x4111, 0x4114, 0x4115, |
|
0x4140, 0x4141, 0x4144, 0x4145, 0x4150, 0x4151, 0x4154, 0x4155, |
|
0x4400, 0x4401, 0x4404, 0x4405, 0x4410, 0x4411, 0x4414, 0x4415, |
|
0x4440, 0x4441, 0x4444, 0x4445, 0x4450, 0x4451, 0x4454, 0x4455, |
|
0x4500, 0x4501, 0x4504, 0x4505, 0x4510, 0x4511, 0x4514, 0x4515, |
|
0x4540, 0x4541, 0x4544, 0x4545, 0x4550, 0x4551, 0x4554, 0x4555, |
|
0x5000, 0x5001, 0x5004, 0x5005, 0x5010, 0x5011, 0x5014, 0x5015, |
|
0x5040, 0x5041, 0x5044, 0x5045, 0x5050, 0x5051, 0x5054, 0x5055, |
|
0x5100, 0x5101, 0x5104, 0x5105, 0x5110, 0x5111, 0x5114, 0x5115, |
|
0x5140, 0x5141, 0x5144, 0x5145, 0x5150, 0x5151, 0x5154, 0x5155, |
|
0x5400, 0x5401, 0x5404, 0x5405, 0x5410, 0x5411, 0x5414, 0x5415, |
|
0x5440, 0x5441, 0x5444, 0x5445, 0x5450, 0x5451, 0x5454, 0x5455, |
|
0x5500, 0x5501, 0x5504, 0x5505, 0x5510, 0x5511, 0x5514, 0x5515, |
|
0x5540, 0x5541, 0x5544, 0x5545, 0x5550, 0x5551, 0x5554, 0x5555 |
|
}; |
|
|
|
/* |
|
* This expands 7 bit indices into 21 bit contents (high bit 18), by inserting 0s between bits. |
|
*/ |
|
private static readonly int[] INTERLEAVE3_TABLE = new int[] |
|
{ |
|
0x00000, 0x00001, 0x00008, 0x00009, 0x00040, 0x00041, 0x00048, 0x00049, |
|
0x00200, 0x00201, 0x00208, 0x00209, 0x00240, 0x00241, 0x00248, 0x00249, |
|
0x01000, 0x01001, 0x01008, 0x01009, 0x01040, 0x01041, 0x01048, 0x01049, |
|
0x01200, 0x01201, 0x01208, 0x01209, 0x01240, 0x01241, 0x01248, 0x01249, |
|
0x08000, 0x08001, 0x08008, 0x08009, 0x08040, 0x08041, 0x08048, 0x08049, |
|
0x08200, 0x08201, 0x08208, 0x08209, 0x08240, 0x08241, 0x08248, 0x08249, |
|
0x09000, 0x09001, 0x09008, 0x09009, 0x09040, 0x09041, 0x09048, 0x09049, |
|
0x09200, 0x09201, 0x09208, 0x09209, 0x09240, 0x09241, 0x09248, 0x09249, |
|
0x40000, 0x40001, 0x40008, 0x40009, 0x40040, 0x40041, 0x40048, 0x40049, |
|
0x40200, 0x40201, 0x40208, 0x40209, 0x40240, 0x40241, 0x40248, 0x40249, |
|
0x41000, 0x41001, 0x41008, 0x41009, 0x41040, 0x41041, 0x41048, 0x41049, |
|
0x41200, 0x41201, 0x41208, 0x41209, 0x41240, 0x41241, 0x41248, 0x41249, |
|
0x48000, 0x48001, 0x48008, 0x48009, 0x48040, 0x48041, 0x48048, 0x48049, |
|
0x48200, 0x48201, 0x48208, 0x48209, 0x48240, 0x48241, 0x48248, 0x48249, |
|
0x49000, 0x49001, 0x49008, 0x49009, 0x49040, 0x49041, 0x49048, 0x49049, |
|
0x49200, 0x49201, 0x49208, 0x49209, 0x49240, 0x49241, 0x49248, 0x49249 |
|
}; |
|
|
|
/* |
|
* This expands 8 bit indices into 32 bit contents (high bit 28), by inserting 0s between bits. |
|
*/ |
|
private static readonly int[] INTERLEAVE4_TABLE = new int[] |
|
{ |
|
0x00000000, 0x00000001, 0x00000010, 0x00000011, 0x00000100, 0x00000101, 0x00000110, 0x00000111, |
|
0x00001000, 0x00001001, 0x00001010, 0x00001011, 0x00001100, 0x00001101, 0x00001110, 0x00001111, |
|
0x00010000, 0x00010001, 0x00010010, 0x00010011, 0x00010100, 0x00010101, 0x00010110, 0x00010111, |
|
0x00011000, 0x00011001, 0x00011010, 0x00011011, 0x00011100, 0x00011101, 0x00011110, 0x00011111, |
|
0x00100000, 0x00100001, 0x00100010, 0x00100011, 0x00100100, 0x00100101, 0x00100110, 0x00100111, |
|
0x00101000, 0x00101001, 0x00101010, 0x00101011, 0x00101100, 0x00101101, 0x00101110, 0x00101111, |
|
0x00110000, 0x00110001, 0x00110010, 0x00110011, 0x00110100, 0x00110101, 0x00110110, 0x00110111, |
|
0x00111000, 0x00111001, 0x00111010, 0x00111011, 0x00111100, 0x00111101, 0x00111110, 0x00111111, |
|
0x01000000, 0x01000001, 0x01000010, 0x01000011, 0x01000100, 0x01000101, 0x01000110, 0x01000111, |
|
0x01001000, 0x01001001, 0x01001010, 0x01001011, 0x01001100, 0x01001101, 0x01001110, 0x01001111, |
|
0x01010000, 0x01010001, 0x01010010, 0x01010011, 0x01010100, 0x01010101, 0x01010110, 0x01010111, |
|
0x01011000, 0x01011001, 0x01011010, 0x01011011, 0x01011100, 0x01011101, 0x01011110, 0x01011111, |
|
0x01100000, 0x01100001, 0x01100010, 0x01100011, 0x01100100, 0x01100101, 0x01100110, 0x01100111, |
|
0x01101000, 0x01101001, 0x01101010, 0x01101011, 0x01101100, 0x01101101, 0x01101110, 0x01101111, |
|
0x01110000, 0x01110001, 0x01110010, 0x01110011, 0x01110100, 0x01110101, 0x01110110, 0x01110111, |
|
0x01111000, 0x01111001, 0x01111010, 0x01111011, 0x01111100, 0x01111101, 0x01111110, 0x01111111, |
|
0x10000000, 0x10000001, 0x10000010, 0x10000011, 0x10000100, 0x10000101, 0x10000110, 0x10000111, |
|
0x10001000, 0x10001001, 0x10001010, 0x10001011, 0x10001100, 0x10001101, 0x10001110, 0x10001111, |
|
0x10010000, 0x10010001, 0x10010010, 0x10010011, 0x10010100, 0x10010101, 0x10010110, 0x10010111, |
|
0x10011000, 0x10011001, 0x10011010, 0x10011011, 0x10011100, 0x10011101, 0x10011110, 0x10011111, |
|
0x10100000, 0x10100001, 0x10100010, 0x10100011, 0x10100100, 0x10100101, 0x10100110, 0x10100111, |
|
0x10101000, 0x10101001, 0x10101010, 0x10101011, 0x10101100, 0x10101101, 0x10101110, 0x10101111, |
|
0x10110000, 0x10110001, 0x10110010, 0x10110011, 0x10110100, 0x10110101, 0x10110110, 0x10110111, |
|
0x10111000, 0x10111001, 0x10111010, 0x10111011, 0x10111100, 0x10111101, 0x10111110, 0x10111111, |
|
0x11000000, 0x11000001, 0x11000010, 0x11000011, 0x11000100, 0x11000101, 0x11000110, 0x11000111, |
|
0x11001000, 0x11001001, 0x11001010, 0x11001011, 0x11001100, 0x11001101, 0x11001110, 0x11001111, |
|
0x11010000, 0x11010001, 0x11010010, 0x11010011, 0x11010100, 0x11010101, 0x11010110, 0x11010111, |
|
0x11011000, 0x11011001, 0x11011010, 0x11011011, 0x11011100, 0x11011101, 0x11011110, 0x11011111, |
|
0x11100000, 0x11100001, 0x11100010, 0x11100011, 0x11100100, 0x11100101, 0x11100110, 0x11100111, |
|
0x11101000, 0x11101001, 0x11101010, 0x11101011, 0x11101100, 0x11101101, 0x11101110, 0x11101111, |
|
0x11110000, 0x11110001, 0x11110010, 0x11110011, 0x11110100, 0x11110101, 0x11110110, 0x11110111, |
|
0x11111000, 0x11111001, 0x11111010, 0x11111011, 0x11111100, 0x11111101, 0x11111110, 0x11111111 |
|
}; |
|
|
|
/* |
|
* This expands 7 bit indices into 35 bit contents (high bit 30), by inserting 0s between bits. |
|
*/ |
|
private static readonly int[] INTERLEAVE5_TABLE = new int[] { |
|
0x00000000, 0x00000001, 0x00000020, 0x00000021, 0x00000400, 0x00000401, 0x00000420, 0x00000421, |
|
0x00008000, 0x00008001, 0x00008020, 0x00008021, 0x00008400, 0x00008401, 0x00008420, 0x00008421, |
|
0x00100000, 0x00100001, 0x00100020, 0x00100021, 0x00100400, 0x00100401, 0x00100420, 0x00100421, |
|
0x00108000, 0x00108001, 0x00108020, 0x00108021, 0x00108400, 0x00108401, 0x00108420, 0x00108421, |
|
0x02000000, 0x02000001, 0x02000020, 0x02000021, 0x02000400, 0x02000401, 0x02000420, 0x02000421, |
|
0x02008000, 0x02008001, 0x02008020, 0x02008021, 0x02008400, 0x02008401, 0x02008420, 0x02008421, |
|
0x02100000, 0x02100001, 0x02100020, 0x02100021, 0x02100400, 0x02100401, 0x02100420, 0x02100421, |
|
0x02108000, 0x02108001, 0x02108020, 0x02108021, 0x02108400, 0x02108401, 0x02108420, 0x02108421, |
|
0x40000000, 0x40000001, 0x40000020, 0x40000021, 0x40000400, 0x40000401, 0x40000420, 0x40000421, |
|
0x40008000, 0x40008001, 0x40008020, 0x40008021, 0x40008400, 0x40008401, 0x40008420, 0x40008421, |
|
0x40100000, 0x40100001, 0x40100020, 0x40100021, 0x40100400, 0x40100401, 0x40100420, 0x40100421, |
|
0x40108000, 0x40108001, 0x40108020, 0x40108021, 0x40108400, 0x40108401, 0x40108420, 0x40108421, |
|
0x42000000, 0x42000001, 0x42000020, 0x42000021, 0x42000400, 0x42000401, 0x42000420, 0x42000421, |
|
0x42008000, 0x42008001, 0x42008020, 0x42008021, 0x42008400, 0x42008401, 0x42008420, 0x42008421, |
|
0x42100000, 0x42100001, 0x42100020, 0x42100021, 0x42100400, 0x42100401, 0x42100420, 0x42100421, |
|
0x42108000, 0x42108001, 0x42108020, 0x42108021, 0x42108400, 0x42108401, 0x42108420, 0x42108421 |
|
}; |
|
|
|
/* |
|
* This expands 9 bit indices into 63 bit (long) contents (high bit 56), by inserting 0s between bits. |
|
*/ |
|
private static readonly long[] INTERLEAVE7_TABLE = new long[] |
|
{ |
|
0x0000000000000000L, 0x0000000000000001L, 0x0000000000000080L, 0x0000000000000081L, |
|
0x0000000000004000L, 0x0000000000004001L, 0x0000000000004080L, 0x0000000000004081L, |
|
0x0000000000200000L, 0x0000000000200001L, 0x0000000000200080L, 0x0000000000200081L, |
|
0x0000000000204000L, 0x0000000000204001L, 0x0000000000204080L, 0x0000000000204081L, |
|
0x0000000010000000L, 0x0000000010000001L, 0x0000000010000080L, 0x0000000010000081L, |
|
0x0000000010004000L, 0x0000000010004001L, 0x0000000010004080L, 0x0000000010004081L, |
|
0x0000000010200000L, 0x0000000010200001L, 0x0000000010200080L, 0x0000000010200081L, |
|
0x0000000010204000L, 0x0000000010204001L, 0x0000000010204080L, 0x0000000010204081L, |
|
0x0000000800000000L, 0x0000000800000001L, 0x0000000800000080L, 0x0000000800000081L, |
|
0x0000000800004000L, 0x0000000800004001L, 0x0000000800004080L, 0x0000000800004081L, |
|
0x0000000800200000L, 0x0000000800200001L, 0x0000000800200080L, 0x0000000800200081L, |
|
0x0000000800204000L, 0x0000000800204001L, 0x0000000800204080L, 0x0000000800204081L, |
|
0x0000000810000000L, 0x0000000810000001L, 0x0000000810000080L, 0x0000000810000081L, |
|
0x0000000810004000L, 0x0000000810004001L, 0x0000000810004080L, 0x0000000810004081L, |
|
0x0000000810200000L, 0x0000000810200001L, 0x0000000810200080L, 0x0000000810200081L, |
|
0x0000000810204000L, 0x0000000810204001L, 0x0000000810204080L, 0x0000000810204081L, |
|
0x0000040000000000L, 0x0000040000000001L, 0x0000040000000080L, 0x0000040000000081L, |
|
0x0000040000004000L, 0x0000040000004001L, 0x0000040000004080L, 0x0000040000004081L, |
|
0x0000040000200000L, 0x0000040000200001L, 0x0000040000200080L, 0x0000040000200081L, |
|
0x0000040000204000L, 0x0000040000204001L, 0x0000040000204080L, 0x0000040000204081L, |
|
0x0000040010000000L, 0x0000040010000001L, 0x0000040010000080L, 0x0000040010000081L, |
|
0x0000040010004000L, 0x0000040010004001L, 0x0000040010004080L, 0x0000040010004081L, |
|
0x0000040010200000L, 0x0000040010200001L, 0x0000040010200080L, 0x0000040010200081L, |
|
0x0000040010204000L, 0x0000040010204001L, 0x0000040010204080L, 0x0000040010204081L, |
|
0x0000040800000000L, 0x0000040800000001L, 0x0000040800000080L, 0x0000040800000081L, |
|
0x0000040800004000L, 0x0000040800004001L, 0x0000040800004080L, 0x0000040800004081L, |
|
0x0000040800200000L, 0x0000040800200001L, 0x0000040800200080L, 0x0000040800200081L, |
|
0x0000040800204000L, 0x0000040800204001L, 0x0000040800204080L, 0x0000040800204081L, |
|
0x0000040810000000L, 0x0000040810000001L, 0x0000040810000080L, 0x0000040810000081L, |
|
0x0000040810004000L, 0x0000040810004001L, 0x0000040810004080L, 0x0000040810004081L, |
|
0x0000040810200000L, 0x0000040810200001L, 0x0000040810200080L, 0x0000040810200081L, |
|
0x0000040810204000L, 0x0000040810204001L, 0x0000040810204080L, 0x0000040810204081L, |
|
0x0002000000000000L, 0x0002000000000001L, 0x0002000000000080L, 0x0002000000000081L, |
|
0x0002000000004000L, 0x0002000000004001L, 0x0002000000004080L, 0x0002000000004081L, |
|
0x0002000000200000L, 0x0002000000200001L, 0x0002000000200080L, 0x0002000000200081L, |
|
0x0002000000204000L, 0x0002000000204001L, 0x0002000000204080L, 0x0002000000204081L, |
|
0x0002000010000000L, 0x0002000010000001L, 0x0002000010000080L, 0x0002000010000081L, |
|
0x0002000010004000L, 0x0002000010004001L, 0x0002000010004080L, 0x0002000010004081L, |
|
0x0002000010200000L, 0x0002000010200001L, 0x0002000010200080L, 0x0002000010200081L, |
|
0x0002000010204000L, 0x0002000010204001L, 0x0002000010204080L, 0x0002000010204081L, |
|
0x0002000800000000L, 0x0002000800000001L, 0x0002000800000080L, 0x0002000800000081L, |
|
0x0002000800004000L, 0x0002000800004001L, 0x0002000800004080L, 0x0002000800004081L, |
|
0x0002000800200000L, 0x0002000800200001L, 0x0002000800200080L, 0x0002000800200081L, |
|
0x0002000800204000L, 0x0002000800204001L, 0x0002000800204080L, 0x0002000800204081L, |
|
0x0002000810000000L, 0x0002000810000001L, 0x0002000810000080L, 0x0002000810000081L, |
|
0x0002000810004000L, 0x0002000810004001L, 0x0002000810004080L, 0x0002000810004081L, |
|
0x0002000810200000L, 0x0002000810200001L, 0x0002000810200080L, 0x0002000810200081L, |
|
0x0002000810204000L, 0x0002000810204001L, 0x0002000810204080L, 0x0002000810204081L, |
|
0x0002040000000000L, 0x0002040000000001L, 0x0002040000000080L, 0x0002040000000081L, |
|
0x0002040000004000L, 0x0002040000004001L, 0x0002040000004080L, 0x0002040000004081L, |
|
0x0002040000200000L, 0x0002040000200001L, 0x0002040000200080L, 0x0002040000200081L, |
|
0x0002040000204000L, 0x0002040000204001L, 0x0002040000204080L, 0x0002040000204081L, |
|
0x0002040010000000L, 0x0002040010000001L, 0x0002040010000080L, 0x0002040010000081L, |
|
0x0002040010004000L, 0x0002040010004001L, 0x0002040010004080L, 0x0002040010004081L, |
|
0x0002040010200000L, 0x0002040010200001L, 0x0002040010200080L, 0x0002040010200081L, |
|
0x0002040010204000L, 0x0002040010204001L, 0x0002040010204080L, 0x0002040010204081L, |
|
0x0002040800000000L, 0x0002040800000001L, 0x0002040800000080L, 0x0002040800000081L, |
|
0x0002040800004000L, 0x0002040800004001L, 0x0002040800004080L, 0x0002040800004081L, |
|
0x0002040800200000L, 0x0002040800200001L, 0x0002040800200080L, 0x0002040800200081L, |
|
0x0002040800204000L, 0x0002040800204001L, 0x0002040800204080L, 0x0002040800204081L, |
|
0x0002040810000000L, 0x0002040810000001L, 0x0002040810000080L, 0x0002040810000081L, |
|
0x0002040810004000L, 0x0002040810004001L, 0x0002040810004080L, 0x0002040810004081L, |
|
0x0002040810200000L, 0x0002040810200001L, 0x0002040810200080L, 0x0002040810200081L, |
|
0x0002040810204000L, 0x0002040810204001L, 0x0002040810204080L, 0x0002040810204081L, |
|
0x0100000000000000L, 0x0100000000000001L, 0x0100000000000080L, 0x0100000000000081L, |
|
0x0100000000004000L, 0x0100000000004001L, 0x0100000000004080L, 0x0100000000004081L, |
|
0x0100000000200000L, 0x0100000000200001L, 0x0100000000200080L, 0x0100000000200081L, |
|
0x0100000000204000L, 0x0100000000204001L, 0x0100000000204080L, 0x0100000000204081L, |
|
0x0100000010000000L, 0x0100000010000001L, 0x0100000010000080L, 0x0100000010000081L, |
|
0x0100000010004000L, 0x0100000010004001L, 0x0100000010004080L, 0x0100000010004081L, |
|
0x0100000010200000L, 0x0100000010200001L, 0x0100000010200080L, 0x0100000010200081L, |
|
0x0100000010204000L, 0x0100000010204001L, 0x0100000010204080L, 0x0100000010204081L, |
|
0x0100000800000000L, 0x0100000800000001L, 0x0100000800000080L, 0x0100000800000081L, |
|
0x0100000800004000L, 0x0100000800004001L, 0x0100000800004080L, 0x0100000800004081L, |
|
0x0100000800200000L, 0x0100000800200001L, 0x0100000800200080L, 0x0100000800200081L, |
|
0x0100000800204000L, 0x0100000800204001L, 0x0100000800204080L, 0x0100000800204081L, |
|
0x0100000810000000L, 0x0100000810000001L, 0x0100000810000080L, 0x0100000810000081L, |
|
0x0100000810004000L, 0x0100000810004001L, 0x0100000810004080L, 0x0100000810004081L, |
|
0x0100000810200000L, 0x0100000810200001L, 0x0100000810200080L, 0x0100000810200081L, |
|
0x0100000810204000L, 0x0100000810204001L, 0x0100000810204080L, 0x0100000810204081L, |
|
0x0100040000000000L, 0x0100040000000001L, 0x0100040000000080L, 0x0100040000000081L, |
|
0x0100040000004000L, 0x0100040000004001L, 0x0100040000004080L, 0x0100040000004081L, |
|
0x0100040000200000L, 0x0100040000200001L, 0x0100040000200080L, 0x0100040000200081L, |
|
0x0100040000204000L, 0x0100040000204001L, 0x0100040000204080L, 0x0100040000204081L, |
|
0x0100040010000000L, 0x0100040010000001L, 0x0100040010000080L, 0x0100040010000081L, |
|
0x0100040010004000L, 0x0100040010004001L, 0x0100040010004080L, 0x0100040010004081L, |
|
0x0100040010200000L, 0x0100040010200001L, 0x0100040010200080L, 0x0100040010200081L, |
|
0x0100040010204000L, 0x0100040010204001L, 0x0100040010204080L, 0x0100040010204081L, |
|
0x0100040800000000L, 0x0100040800000001L, 0x0100040800000080L, 0x0100040800000081L, |
|
0x0100040800004000L, 0x0100040800004001L, 0x0100040800004080L, 0x0100040800004081L, |
|
0x0100040800200000L, 0x0100040800200001L, 0x0100040800200080L, 0x0100040800200081L, |
|
0x0100040800204000L, 0x0100040800204001L, 0x0100040800204080L, 0x0100040800204081L, |
|
0x0100040810000000L, 0x0100040810000001L, 0x0100040810000080L, 0x0100040810000081L, |
|
0x0100040810004000L, 0x0100040810004001L, 0x0100040810004080L, 0x0100040810004081L, |
|
0x0100040810200000L, 0x0100040810200001L, 0x0100040810200080L, 0x0100040810200081L, |
|
0x0100040810204000L, 0x0100040810204001L, 0x0100040810204080L, 0x0100040810204081L, |
|
0x0102000000000000L, 0x0102000000000001L, 0x0102000000000080L, 0x0102000000000081L, |
|
0x0102000000004000L, 0x0102000000004001L, 0x0102000000004080L, 0x0102000000004081L, |
|
0x0102000000200000L, 0x0102000000200001L, 0x0102000000200080L, 0x0102000000200081L, |
|
0x0102000000204000L, 0x0102000000204001L, 0x0102000000204080L, 0x0102000000204081L, |
|
0x0102000010000000L, 0x0102000010000001L, 0x0102000010000080L, 0x0102000010000081L, |
|
0x0102000010004000L, 0x0102000010004001L, 0x0102000010004080L, 0x0102000010004081L, |
|
0x0102000010200000L, 0x0102000010200001L, 0x0102000010200080L, 0x0102000010200081L, |
|
0x0102000010204000L, 0x0102000010204001L, 0x0102000010204080L, 0x0102000010204081L, |
|
0x0102000800000000L, 0x0102000800000001L, 0x0102000800000080L, 0x0102000800000081L, |
|
0x0102000800004000L, 0x0102000800004001L, 0x0102000800004080L, 0x0102000800004081L, |
|
0x0102000800200000L, 0x0102000800200001L, 0x0102000800200080L, 0x0102000800200081L, |
|
0x0102000800204000L, 0x0102000800204001L, 0x0102000800204080L, 0x0102000800204081L, |
|
0x0102000810000000L, 0x0102000810000001L, 0x0102000810000080L, 0x0102000810000081L, |
|
0x0102000810004000L, 0x0102000810004001L, 0x0102000810004080L, 0x0102000810004081L, |
|
0x0102000810200000L, 0x0102000810200001L, 0x0102000810200080L, 0x0102000810200081L, |
|
0x0102000810204000L, 0x0102000810204001L, 0x0102000810204080L, 0x0102000810204081L, |
|
0x0102040000000000L, 0x0102040000000001L, 0x0102040000000080L, 0x0102040000000081L, |
|
0x0102040000004000L, 0x0102040000004001L, 0x0102040000004080L, 0x0102040000004081L, |
|
0x0102040000200000L, 0x0102040000200001L, 0x0102040000200080L, 0x0102040000200081L, |
|
0x0102040000204000L, 0x0102040000204001L, 0x0102040000204080L, 0x0102040000204081L, |
|
0x0102040010000000L, 0x0102040010000001L, 0x0102040010000080L, 0x0102040010000081L, |
|
0x0102040010004000L, 0x0102040010004001L, 0x0102040010004080L, 0x0102040010004081L, |
|
0x0102040010200000L, 0x0102040010200001L, 0x0102040010200080L, 0x0102040010200081L, |
|
0x0102040010204000L, 0x0102040010204001L, 0x0102040010204080L, 0x0102040010204081L, |
|
0x0102040800000000L, 0x0102040800000001L, 0x0102040800000080L, 0x0102040800000081L, |
|
0x0102040800004000L, 0x0102040800004001L, 0x0102040800004080L, 0x0102040800004081L, |
|
0x0102040800200000L, 0x0102040800200001L, 0x0102040800200080L, 0x0102040800200081L, |
|
0x0102040800204000L, 0x0102040800204001L, 0x0102040800204080L, 0x0102040800204081L, |
|
0x0102040810000000L, 0x0102040810000001L, 0x0102040810000080L, 0x0102040810000081L, |
|
0x0102040810004000L, 0x0102040810004001L, 0x0102040810004080L, 0x0102040810004081L, |
|
0x0102040810200000L, 0x0102040810200001L, 0x0102040810200080L, 0x0102040810200081L, |
|
0x0102040810204000L, 0x0102040810204001L, 0x0102040810204080L, 0x0102040810204081L |
|
}; |
|
|
|
// For toString(); must have length 64 |
|
private const string ZEROES = "0000000000000000000000000000000000000000000000000000000000000000"; |
|
|
|
internal static readonly byte[] BitLengths = |
|
{ |
|
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, |
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
|
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
|
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, |
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8 |
|
}; |
|
|
|
// TODO make m fixed for the LongArray, and hence compute T once and for all |
|
|
|
private long[] m_ints; |
|
|
|
public LongArray(int intLen) |
|
{ |
|
m_ints = new long[intLen]; |
|
} |
|
|
|
public LongArray(long[] ints) |
|
{ |
|
m_ints = ints; |
|
} |
|
|
|
public LongArray(long[] ints, int off, int len) |
|
{ |
|
if (off == 0 && len == ints.Length) |
|
{ |
|
m_ints = ints; |
|
} |
|
else |
|
{ |
|
m_ints = new long[len]; |
|
Array.Copy(ints, off, m_ints, 0, len); |
|
} |
|
} |
|
|
|
public LongArray(BigInteger bigInt) |
|
{ |
|
if (bigInt == null || bigInt.SignValue < 0) |
|
{ |
|
throw new ArgumentException("invalid F2m field value", "bigInt"); |
|
} |
|
|
|
if (bigInt.SignValue == 0) |
|
{ |
|
m_ints = new long[] { 0L }; |
|
return; |
|
} |
|
|
|
byte[] barr = bigInt.ToByteArray(); |
|
int barrLen = barr.Length; |
|
int barrStart = 0; |
|
if (barr[0] == 0) |
|
{ |
|
// First byte is 0 to enforce highest (=sign) bit is zero. |
|
// In this case ignore barr[0]. |
|
barrLen--; |
|
barrStart = 1; |
|
} |
|
int intLen = (barrLen + 7) / 8; |
|
m_ints = new long[intLen]; |
|
|
|
int iarrJ = intLen - 1; |
|
int rem = barrLen % 8 + barrStart; |
|
long temp = 0; |
|
int barrI = barrStart; |
|
if (barrStart < rem) |
|
{ |
|
for (; barrI < rem; barrI++) |
|
{ |
|
temp <<= 8; |
|
uint barrBarrI = barr[barrI]; |
|
temp |= barrBarrI; |
|
} |
|
m_ints[iarrJ--] = temp; |
|
} |
|
|
|
for (; iarrJ >= 0; iarrJ--) |
|
{ |
|
temp = 0; |
|
for (int i = 0; i < 8; i++) |
|
{ |
|
temp <<= 8; |
|
uint barrBarrI = barr[barrI++]; |
|
temp |= barrBarrI; |
|
} |
|
m_ints[iarrJ] = temp; |
|
} |
|
} |
|
|
|
internal void CopyTo(long[] z, int zOff) |
|
{ |
|
Array.Copy(m_ints, 0, z, zOff, m_ints.Length); |
|
} |
|
|
|
public bool IsOne() |
|
{ |
|
long[] a = m_ints; |
|
if (a[0] != 1L) |
|
{ |
|
return false; |
|
} |
|
for (int i = 1; i < a.Length; ++i) |
|
{ |
|
if (a[i] != 0L) |
|
{ |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
public bool IsZero() |
|
{ |
|
long[] a = m_ints; |
|
for (int i = 0; i < a.Length; ++i) |
|
{ |
|
if (a[i] != 0L) |
|
{ |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
public int GetUsedLength() |
|
{ |
|
return GetUsedLengthFrom(m_ints.Length); |
|
} |
|
|
|
public int GetUsedLengthFrom(int from) |
|
{ |
|
long[] a = m_ints; |
|
from = System.Math.Min(from, a.Length); |
|
|
|
if (from < 1) |
|
{ |
|
return 0; |
|
} |
|
|
|
// Check if first element will act as sentinel |
|
if (a[0] != 0) |
|
{ |
|
while (a[--from] == 0) |
|
{ |
|
} |
|
return from + 1; |
|
} |
|
|
|
do |
|
{ |
|
if (a[--from] != 0) |
|
{ |
|
return from + 1; |
|
} |
|
} |
|
while (from > 0); |
|
|
|
return 0; |
|
} |
|
|
|
public int Degree() |
|
{ |
|
int i = m_ints.Length; |
|
long w; |
|
do |
|
{ |
|
if (i == 0) |
|
{ |
|
return 0; |
|
} |
|
w = m_ints[--i]; |
|
} |
|
while (w == 0); |
|
|
|
return (i << 6) + BitLength(w); |
|
} |
|
|
|
private int DegreeFrom(int limit) |
|
{ |
|
int i = (int)(((uint)limit + 62) >> 6); |
|
long w; |
|
do |
|
{ |
|
if (i == 0) |
|
{ |
|
return 0; |
|
} |
|
w = m_ints[--i]; |
|
} |
|
while (w == 0); |
|
|
|
return (i << 6) + BitLength(w); |
|
} |
|
|
|
// private int lowestCoefficient() |
|
// { |
|
// for (int i = 0; i < m_ints.Length; ++i) |
|
// { |
|
// long mi = m_ints[i]; |
|
// if (mi != 0) |
|
// { |
|
// int j = 0; |
|
// while ((mi & 0xFFL) == 0) |
|
// { |
|
// j += 8; |
|
// mi >>>= 8; |
|
// } |
|
// while ((mi & 1L) == 0) |
|
// { |
|
// ++j; |
|
// mi >>>= 1; |
|
// } |
|
// return (i << 6) + j; |
|
// } |
|
// } |
|
// return -1; |
|
// } |
|
|
|
private static int BitLength(long w) |
|
{ |
|
int u = (int)((ulong)w >> 32), b; |
|
if (u == 0) |
|
{ |
|
u = (int)w; |
|
b = 0; |
|
} |
|
else |
|
{ |
|
b = 32; |
|
} |
|
|
|
int t = (int)((uint)u >> 16), k; |
|
if (t == 0) |
|
{ |
|
t = (int)((uint)u >> 8); |
|
k = (t == 0) ? BitLengths[u] : 8 + BitLengths[t]; |
|
} |
|
else |
|
{ |
|
int v = (int)((uint)t >> 8); |
|
k = (v == 0) ? 16 + BitLengths[t] : 24 + BitLengths[v]; |
|
} |
|
|
|
return b + k; |
|
} |
|
|
|
private long[] ResizedInts(int newLen) |
|
{ |
|
long[] newInts = new long[newLen]; |
|
Array.Copy(m_ints, 0, newInts, 0, System.Math.Min(m_ints.Length, newLen)); |
|
return newInts; |
|
} |
|
|
|
public BigInteger ToBigInteger() |
|
{ |
|
int usedLen = GetUsedLength(); |
|
if (usedLen == 0) |
|
{ |
|
return BigInteger.Zero; |
|
} |
|
|
|
long highestInt = m_ints[usedLen - 1]; |
|
byte[] temp = new byte[8]; |
|
int barrI = 0; |
|
bool trailingZeroBytesDone = false; |
|
for (int j = 7; j >= 0; j--) |
|
{ |
|
byte thisByte = (byte)((ulong)highestInt >> (8 * j)); |
|
if (trailingZeroBytesDone || (thisByte != 0)) |
|
{ |
|
trailingZeroBytesDone = true; |
|
temp[barrI++] = thisByte; |
|
} |
|
} |
|
|
|
int barrLen = 8 * (usedLen - 1) + barrI; |
|
byte[] barr = new byte[barrLen]; |
|
for (int j = 0; j < barrI; j++) |
|
{ |
|
barr[j] = temp[j]; |
|
} |
|
// Highest value int is done now |
|
|
|
for (int iarrJ = usedLen - 2; iarrJ >= 0; iarrJ--) |
|
{ |
|
long mi = m_ints[iarrJ]; |
|
for (int j = 7; j >= 0; j--) |
|
{ |
|
barr[barrI++] = (byte)((ulong)mi >> (8 * j)); |
|
} |
|
} |
|
return new BigInteger(1, barr); |
|
} |
|
|
|
// private static long shiftUp(long[] x, int xOff, int count) |
|
// { |
|
// long prev = 0; |
|
// for (int i = 0; i < count; ++i) |
|
// { |
|
// long next = x[xOff + i]; |
|
// x[xOff + i] = (next << 1) | prev; |
|
// prev = next >>> 63; |
|
// } |
|
// return prev; |
|
// } |
|
|
|
private static long ShiftUp(long[] x, int xOff, int count, int shift) |
|
{ |
|
int shiftInv = 64 - shift; |
|
long prev = 0; |
|
for (int i = 0; i < count; ++i) |
|
{ |
|
long next = x[xOff + i]; |
|
x[xOff + i] = (next << shift) | prev; |
|
prev = (long)((ulong)next >> shiftInv); |
|
} |
|
return prev; |
|
} |
|
|
|
private static long ShiftUp(long[] x, int xOff, long[] z, int zOff, int count, int shift) |
|
{ |
|
int shiftInv = 64 - shift; |
|
long prev = 0; |
|
for (int i = 0; i < count; ++i) |
|
{ |
|
long next = x[xOff + i]; |
|
z[zOff + i] = (next << shift) | prev; |
|
prev = (long)((ulong)next >> shiftInv); |
|
} |
|
return prev; |
|
} |
|
|
|
public LongArray AddOne() |
|
{ |
|
if (m_ints.Length == 0) |
|
{ |
|
return new LongArray(new long[]{ 1L }); |
|
} |
|
|
|
int resultLen = System.Math.Max(1, GetUsedLength()); |
|
long[] ints = ResizedInts(resultLen); |
|
ints[0] ^= 1L; |
|
return new LongArray(ints); |
|
} |
|
|
|
// private void addShiftedByBits(LongArray other, int bits) |
|
// { |
|
// int words = bits >>> 6; |
|
// int shift = bits & 0x3F; |
|
// |
|
// if (shift == 0) |
|
// { |
|
// addShiftedByWords(other, words); |
|
// return; |
|
// } |
|
// |
|
// int otherUsedLen = other.GetUsedLength(); |
|
// if (otherUsedLen == 0) |
|
// { |
|
// return; |
|
// } |
|
// |
|
// int minLen = otherUsedLen + words + 1; |
|
// if (minLen > m_ints.Length) |
|
// { |
|
// m_ints = resizedInts(minLen); |
|
// } |
|
// |
|
// long carry = addShiftedByBits(m_ints, words, other.m_ints, 0, otherUsedLen, shift); |
|
// m_ints[otherUsedLen + words] ^= carry; |
|
// } |
|
|
|
private void AddShiftedByBitsSafe(LongArray other, int otherDegree, int bits) |
|
{ |
|
int otherLen = (int)((uint)(otherDegree + 63) >> 6); |
|
|
|
int words = (int)((uint)bits >> 6); |
|
int shift = bits & 0x3F; |
|
|
|
if (shift == 0) |
|
{ |
|
Add(m_ints, words, other.m_ints, 0, otherLen); |
|
return; |
|
} |
|
|
|
long carry = AddShiftedUp(m_ints, words, other.m_ints, 0, otherLen, shift); |
|
if (carry != 0L) |
|
{ |
|
m_ints[otherLen + words] ^= carry; |
|
} |
|
} |
|
|
|
private static long AddShiftedUp(long[] x, int xOff, long[] y, int yOff, int count, int shift) |
|
{ |
|
int shiftInv = 64 - shift; |
|
long prev = 0; |
|
for (int i = 0; i < count; ++i) |
|
{ |
|
long next = y[yOff + i]; |
|
x[xOff + i] ^= (next << shift) | prev; |
|
prev = (long)((ulong)next >> shiftInv); |
|
} |
|
return prev; |
|
} |
|
|
|
private static long AddShiftedDown(long[] x, int xOff, long[] y, int yOff, int count, int shift) |
|
{ |
|
int shiftInv = 64 - shift; |
|
long prev = 0; |
|
int i = count; |
|
while (--i >= 0) |
|
{ |
|
long next = y[yOff + i]; |
|
x[xOff + i] ^= (long)((ulong)next >> shift) | prev; |
|
prev = next << shiftInv; |
|
} |
|
return prev; |
|
} |
|
|
|
public void AddShiftedByWords(LongArray other, int words) |
|
{ |
|
int otherUsedLen = other.GetUsedLength(); |
|
if (otherUsedLen == 0) |
|
{ |
|
return; |
|
} |
|
|
|
int minLen = otherUsedLen + words; |
|
if (minLen > m_ints.Length) |
|
{ |
|
m_ints = ResizedInts(minLen); |
|
} |
|
|
|
Add(m_ints, words, other.m_ints, 0, otherUsedLen); |
|
} |
|
|
|
private static void Add(long[] x, int xOff, long[] y, int yOff, int count) |
|
{ |
|
for (int i = 0; i < count; ++i) |
|
{ |
|
x[xOff + i] ^= y[yOff + i]; |
|
} |
|
} |
|
|
|
private static void Add(long[] x, int xOff, long[] y, int yOff, long[] z, int zOff, int count) |
|
{ |
|
for (int i = 0; i < count; ++i) |
|
{ |
|
z[zOff + i] = x[xOff + i] ^ y[yOff + i]; |
|
} |
|
} |
|
|
|
private static void AddBoth(long[] x, int xOff, long[] y1, int y1Off, long[] y2, int y2Off, int count) |
|
{ |
|
for (int i = 0; i < count; ++i) |
|
{ |
|
x[xOff + i] ^= y1[y1Off + i] ^ y2[y2Off + i]; |
|
} |
|
} |
|
|
|
private static void Distribute(long[] x, int src, int dst1, int dst2, int count) |
|
{ |
|
for (int i = 0; i < count; ++i) |
|
{ |
|
long v = x[src + i]; |
|
x[dst1 + i] ^= v; |
|
x[dst2 + i] ^= v; |
|
} |
|
} |
|
|
|
public int Length |
|
{ |
|
get { return m_ints.Length; } |
|
} |
|
|
|
private static void FlipWord(long[] buf, int off, int bit, long word) |
|
{ |
|
int n = off + (int)((uint)bit >> 6); |
|
int shift = bit & 0x3F; |
|
if (shift == 0) |
|
{ |
|
buf[n] ^= word; |
|
} |
|
else |
|
{ |
|
buf[n] ^= word << shift; |
|
word = (long)((ulong)word >> (64 - shift)); |
|
if (word != 0) |
|
{ |
|
buf[++n] ^= word; |
|
} |
|
} |
|
} |
|
|
|
// private static long getWord(long[] buf, int off, int len, int bit) |
|
// { |
|
// int n = off + (bit >>> 6); |
|
// int shift = bit & 0x3F; |
|
// if (shift == 0) |
|
// { |
|
// return buf[n]; |
|
// } |
|
// long result = buf[n] >>> shift; |
|
// if (++n < len) |
|
// { |
|
// result |= buf[n] << (64 - shift); |
|
// } |
|
// return result; |
|
// } |
|
|
|
public bool TestBitZero() |
|
{ |
|
return m_ints.Length > 0 && (m_ints[0] & 1L) != 0; |
|
} |
|
|
|
private static bool TestBit(long[] buf, int off, int n) |
|
{ |
|
// theInt = n / 64 |
|
int theInt = (int)((uint)n >> 6); |
|
// theBit = n % 64 |
|
int theBit = n & 0x3F; |
|
long tester = 1L << theBit; |
|
return (buf[off + theInt] & tester) != 0; |
|
} |
|
|
|
private static void FlipBit(long[] buf, int off, int n) |
|
{ |
|
// theInt = n / 64 |
|
int theInt = (int)((uint)n >> 6); |
|
// theBit = n % 64 |
|
int theBit = n & 0x3F; |
|
long flipper = 1L << theBit; |
|
buf[off + theInt] ^= flipper; |
|
} |
|
|
|
// private static void SetBit(long[] buf, int off, int n) |
|
// { |
|
// // theInt = n / 64 |
|
// int theInt = n >>> 6; |
|
// // theBit = n % 64 |
|
// int theBit = n & 0x3F; |
|
// long setter = 1L << theBit; |
|
// buf[off + theInt] |= setter; |
|
// } |
|
// |
|
// private static void ClearBit(long[] buf, int off, int n) |
|
// { |
|
// // theInt = n / 64 |
|
// int theInt = n >>> 6; |
|
// // theBit = n % 64 |
|
// int theBit = n & 0x3F; |
|
// long setter = 1L << theBit; |
|
// buf[off + theInt] &= ~setter; |
|
// } |
|
|
|
private static void MultiplyWord(long a, long[] b, int bLen, long[] c, int cOff) |
|
{ |
|
if ((a & 1L) != 0L) |
|
{ |
|
Add(c, cOff, b, 0, bLen); |
|
} |
|
int k = 1; |
|
while ((a = (long)((ulong)a >> 1)) != 0L) |
|
{ |
|
if ((a & 1L) != 0L) |
|
{ |
|
long carry = AddShiftedUp(c, cOff, b, 0, bLen, k); |
|
if (carry != 0L) |
|
{ |
|
c[cOff + bLen] ^= carry; |
|
} |
|
} |
|
++k; |
|
} |
|
} |
|
|
|
public LongArray ModMultiplyLD(LongArray other, int m, int[] ks) |
|
{ |
|
/* |
|
* Find out the degree of each argument and handle the zero cases |
|
*/ |
|
int aDeg = Degree(); |
|
if (aDeg == 0) |
|
{ |
|
return this; |
|
} |
|
int bDeg = other.Degree(); |
|
if (bDeg == 0) |
|
{ |
|
return other; |
|
} |
|
|
|
/* |
|
* Swap if necessary so that A is the smaller argument |
|
*/ |
|
LongArray A = this, B = other; |
|
if (aDeg > bDeg) |
|
{ |
|
A = other; B = this; |
|
int tmp = aDeg; aDeg = bDeg; bDeg = tmp; |
|
} |
|
|
|
/* |
|
* Establish the word lengths of the arguments and result |
|
*/ |
|
int aLen = (int)((uint)(aDeg + 63) >> 6); |
|
int bLen = (int)((uint)(bDeg + 63) >> 6); |
|
int cLen = (int)((uint)(aDeg + bDeg + 62) >> 6); |
|
|
|
if (aLen == 1) |
|
{ |
|
long a0 = A.m_ints[0]; |
|
if (a0 == 1L) |
|
{ |
|
return B; |
|
} |
|
|
|
/* |
|
* Fast path for small A, with performance dependent only on the number of set bits |
|
*/ |
|
long[] c0 = new long[cLen]; |
|
MultiplyWord(a0, B.m_ints, bLen, c0, 0); |
|
|
|
/* |
|
* Reduce the raw answer against the reduction coefficients |
|
*/ |
|
return ReduceResult(c0, 0, cLen, m, ks); |
|
} |
|
|
|
/* |
|
* Determine if B will get bigger during shifting |
|
*/ |
|
int bMax = (int)((uint)(bDeg + 7 + 63) >> 6); |
|
|
|
/* |
|
* Lookup table for the offset of each B in the tables |
|
*/ |
|
int[] ti = new int[16]; |
|
|
|
/* |
|
* Precompute table of all 4-bit products of B |
|
*/ |
|
long[] T0 = new long[bMax << 4]; |
|
int tOff = bMax; |
|
ti[1] = tOff; |
|
Array.Copy(B.m_ints, 0, T0, tOff, bLen); |
|
for (int i = 2; i < 16; ++i) |
|
{ |
|
ti[i] = (tOff += bMax); |
|
if ((i & 1) == 0) |
|
{ |
|
ShiftUp(T0, (int)((uint)tOff >> 1), T0, tOff, bMax, 1); |
|
} |
|
else |
|
{ |
|
Add(T0, bMax, T0, tOff - bMax, T0, tOff, bMax); |
|
} |
|
} |
|
|
|
/* |
|
* Second table with all 4-bit products of B shifted 4 bits |
|
*/ |
|
long[] T1 = new long[T0.Length]; |
|
ShiftUp(T0, 0, T1, 0, T0.Length, 4); |
|
// shiftUp(T0, bMax, T1, bMax, tOff, 4); |
|
|
|
long[] a = A.m_ints; |
|
long[] c = new long[cLen]; |
|
|
|
int MASK = 0xF; |
|
|
|
/* |
|
* Lopez-Dahab algorithm |
|
*/ |
|
|
|
for (int k = 56; k >= 0; k -= 8) |
|
{ |
|
for (int j = 1; j < aLen; j += 2) |
|
{ |
|
int aVal = (int)((ulong)a[j] >> k); |
|
int u = aVal & MASK; |
|
int v = (int)((uint)aVal >> 4) & MASK; |
|
AddBoth(c, j - 1, T0, ti[u], T1, ti[v], bMax); |
|
} |
|
ShiftUp(c, 0, cLen, 8); |
|
} |
|
|
|
for (int k = 56; k >= 0; k -= 8) |
|
{ |
|
for (int j = 0; j < aLen; j += 2) |
|
{ |
|
int aVal = (int)((ulong)a[j] >> k); |
|
int u = aVal & MASK; |
|
int v = (int)((uint)aVal >> 4) & MASK; |
|
AddBoth(c, j, T0, ti[u], T1, ti[v], bMax); |
|
} |
|
if (k > 0) |
|
{ |
|
ShiftUp(c, 0, cLen, 8); |
|
} |
|
} |
|
|
|
/* |
|
* Finally the raw answer is collected, reduce it against the reduction coefficients |
|
*/ |
|
return ReduceResult(c, 0, cLen, m, ks); |
|
} |
|
|
|
public LongArray ModMultiply(LongArray other, int m, int[] ks) |
|
{ |
|
/* |
|
* Find out the degree of each argument and handle the zero cases |
|
*/ |
|
int aDeg = Degree(); |
|
if (aDeg == 0) |
|
{ |
|
return this; |
|
} |
|
int bDeg = other.Degree(); |
|
if (bDeg == 0) |
|
{ |
|
return other; |
|
} |
|
|
|
/* |
|
* Swap if necessary so that A is the smaller argument |
|
*/ |
|
LongArray A = this, B = other; |
|
if (aDeg > bDeg) |
|
{ |
|
A = other; B = this; |
|
int tmp = aDeg; aDeg = bDeg; bDeg = tmp; |
|
} |
|
|
|
/* |
|
* Establish the word lengths of the arguments and result |
|
*/ |
|
int aLen = (int)((uint)(aDeg + 63) >> 6); |
|
int bLen = (int)((uint)(bDeg + 63) >> 6); |
|
int cLen = (int)((uint)(aDeg + bDeg + 62) >> 6); |
|
|
|
if (aLen == 1) |
|
{ |
|
long a0 = A.m_ints[0]; |
|
if (a0 == 1L) |
|
{ |
|
return B; |
|
} |
|
|
|
/* |
|
* Fast path for small A, with performance dependent only on the number of set bits |
|
*/ |
|
long[] c0 = new long[cLen]; |
|
MultiplyWord(a0, B.m_ints, bLen, c0, 0); |
|
|
|
/* |
|
* Reduce the raw answer against the reduction coefficients |
|
*/ |
|
return ReduceResult(c0, 0, cLen, m, ks); |
|
} |
|
|
|
/* |
|
* Determine if B will get bigger during shifting |
|
*/ |
|
int bMax = (int)((uint)(bDeg + 7 + 63) >> 6); |
|
|
|
/* |
|
* Lookup table for the offset of each B in the tables |
|
*/ |
|
int[] ti = new int[16]; |
|
|
|
/* |
|
* Precompute table of all 4-bit products of B |
|
*/ |
|
long[] T0 = new long[bMax << 4]; |
|
int tOff = bMax; |
|
ti[1] = tOff; |
|
Array.Copy(B.m_ints, 0, T0, tOff, bLen); |
|
for (int i = 2; i < 16; ++i) |
|
{ |
|
ti[i] = (tOff += bMax); |
|
if ((i & 1) == 0) |
|
{ |
|
ShiftUp(T0, (int)((uint)tOff >> 1), T0, tOff, bMax, 1); |
|
} |
|
else |
|
{ |
|
Add(T0, bMax, T0, tOff - bMax, T0, tOff, bMax); |
|
} |
|
} |
|
|
|
/* |
|
* Second table with all 4-bit products of B shifted 4 bits |
|
*/ |
|
long[] T1 = new long[T0.Length]; |
|
ShiftUp(T0, 0, T1, 0, T0.Length, 4); |
|
// ShiftUp(T0, bMax, T1, bMax, tOff, 4); |
|
|
|
long[] a = A.m_ints; |
|
long[] c = new long[cLen << 3]; |
|
|
|
int MASK = 0xF; |
|
|
|
/* |
|
* Lopez-Dahab (Modified) algorithm |
|
*/ |
|
|
|
for (int aPos = 0; aPos < aLen; ++aPos) |
|
{ |
|
long aVal = a[aPos]; |
|
int cOff = aPos; |
|
for (;;) |
|
{ |
|
int u = (int)aVal & MASK; |
|
aVal = (long)((ulong)aVal >> 4); |
|
int v = (int)aVal & MASK; |
|
AddBoth(c, cOff, T0, ti[u], T1, ti[v], bMax); |
|
aVal = (long)((ulong)aVal >> 4); |
|
if (aVal == 0L) |
|
{ |
|
break; |
|
} |
|
cOff += cLen; |
|
} |
|
} |
|
|
|
{ |
|
int cOff = c.Length; |
|
while ((cOff -= cLen) != 0) |
|
{ |
|
AddShiftedUp(c, cOff - cLen, c, cOff, cLen, 8); |
|
} |
|
} |
|
|
|
/* |
|
* Finally the raw answer is collected, reduce it against the reduction coefficients |
|
*/ |
|
return ReduceResult(c, 0, cLen, m, ks); |
|
} |
|
|
|
public LongArray ModMultiplyAlt(LongArray other, int m, int[] ks) |
|
{ |
|
/* |
|
* Find out the degree of each argument and handle the zero cases |
|
*/ |
|
int aDeg = Degree(); |
|
if (aDeg == 0) |
|
{ |
|
return this; |
|
} |
|
int bDeg = other.Degree(); |
|
if (bDeg == 0) |
|
{ |
|
return other; |
|
} |
|
|
|
/* |
|
* Swap if necessary so that A is the smaller argument |
|
*/ |
|
LongArray A = this, B = other; |
|
if (aDeg > bDeg) |
|
{ |
|
A = other; B = this; |
|
int tmp = aDeg; aDeg = bDeg; bDeg = tmp; |
|
} |
|
|
|
/* |
|
* Establish the word lengths of the arguments and result |
|
*/ |
|
int aLen = (int)((uint)(aDeg + 63) >> 6); |
|
int bLen = (int)((uint)(bDeg + 63) >> 6); |
|
int cLen = (int)((uint)(aDeg + bDeg + 62) >> 6); |
|
|
|
if (aLen == 1) |
|
{ |
|
long a0 = A.m_ints[0]; |
|
if (a0 == 1L) |
|
{ |
|
return B; |
|
} |
|
|
|
/* |
|
* Fast path for small A, with performance dependent only on the number of set bits |
|
*/ |
|
long[] c0 = new long[cLen]; |
|
MultiplyWord(a0, B.m_ints, bLen, c0, 0); |
|
|
|
/* |
|
* Reduce the raw answer against the reduction coefficients |
|
*/ |
|
return ReduceResult(c0, 0, cLen, m, ks); |
|
} |
|
|
|
// NOTE: This works, but is slower than width 4 processing |
|
// if (aLen == 2) |
|
// { |
|
// /* |
|
// * Use common-multiplicand optimization to save ~1/4 of the adds |
|
// */ |
|
// long a1 = A.m_ints[0], a2 = A.m_ints[1]; |
|
// long aa = a1 & a2; a1 ^= aa; a2 ^= aa; |
|
// |
|
// long[] b = B.m_ints; |
|
// long[] c = new long[cLen]; |
|
// multiplyWord(aa, b, bLen, c, 1); |
|
// add(c, 0, c, 1, cLen - 1); |
|
// multiplyWord(a1, b, bLen, c, 0); |
|
// multiplyWord(a2, b, bLen, c, 1); |
|
// |
|
// /* |
|
// * Reduce the raw answer against the reduction coefficients |
|
// */ |
|
// return ReduceResult(c, 0, cLen, m, ks); |
|
// } |
|
|
|
/* |
|
* Determine the parameters of the Interleaved window algorithm: the 'width' in bits to |
|
* process together, the number of evaluation 'positions' implied by that width, and the |
|
* 'top' position at which the regular window algorithm stops. |
|
*/ |
|
int width, positions, top, banks; |
|
|
|
// NOTE: width 4 is the fastest over the entire range of sizes used in current crypto |
|
// width = 1; positions = 64; top = 64; banks = 4; |
|
// width = 2; positions = 32; top = 64; banks = 4; |
|
// width = 3; positions = 21; top = 63; banks = 3; |
|
width = 4; positions = 16; top = 64; banks = 8; |
|
// width = 5; positions = 13; top = 65; banks = 7; |
|
// width = 7; positions = 9; top = 63; banks = 9; |
|
// width = 8; positions = 8; top = 64; banks = 8; |
|
|
|
/* |
|
* Determine if B will get bigger during shifting |
|
*/ |
|
int shifts = top < 64 ? positions : positions - 1; |
|
int bMax = (int)((uint)(bDeg + shifts + 63) >> 6); |
|
|
|
int bTotal = bMax * banks, stride = width * banks; |
|
|
|
/* |
|
* Create a single temporary buffer, with an offset table to find the positions of things in it |
|
*/ |
|
int[] ci = new int[1 << width]; |
|
int cTotal = aLen; |
|
{ |
|
ci[0] = cTotal; |
|
cTotal += bTotal; |
|
ci[1] = cTotal; |
|
for (int i = 2; i < ci.Length; ++i) |
|
{ |
|
cTotal += cLen; |
|
ci[i] = cTotal; |
|
} |
|
cTotal += cLen; |
|
} |
|
// NOTE: Provide a safe dump for "high zeroes" since we are adding 'bMax' and not 'bLen' |
|
++cTotal; |
|
|
|
long[] c = new long[cTotal]; |
|
|
|
// Prepare A in Interleaved form, according to the chosen width |
|
Interleave(A.m_ints, 0, c, 0, aLen, width); |
|
|
|
// Make a working copy of B, since we will be shifting it |
|
{ |
|
int bOff = aLen; |
|
Array.Copy(B.m_ints, 0, c, bOff, bLen); |
|
for (int bank = 1; bank < banks; ++bank) |
|
{ |
|
ShiftUp(c, aLen, c, bOff += bMax, bMax, bank); |
|
} |
|
} |
|
|
|
/* |
|
* The main loop analyzes the Interleaved windows in A, and for each non-zero window |
|
* a single word-array XOR is performed to a carefully selected slice of 'c'. The loop is |
|
* breadth-first, checking the lowest window in each word, then looping again for the |
|
* next higher window position. |
|
*/ |
|
int MASK = (1 << width) - 1; |
|
|
|
int k = 0; |
|
for (;;) |
|
{ |
|
int aPos = 0; |
|
do |
|
{ |
|
long aVal = (long)((ulong)c[aPos] >> k); |
|
int bank = 0, bOff = aLen; |
|
for (;;) |
|
{ |
|
int index = (int)(aVal) & MASK; |
|
if (index != 0) |
|
{ |
|
/* |
|
* Add to a 'c' buffer based on the bit-pattern of 'index'. Since A is in |
|
* Interleaved form, the bits represent the current B shifted by 0, 'positions', |
|
* 'positions' * 2, ..., 'positions' * ('width' - 1) |
|
*/ |
|
Add(c, aPos + ci[index], c, bOff, bMax); |
|
} |
|
if (++bank == banks) |
|
{ |
|
break; |
|
} |
|
bOff += bMax; |
|
aVal = (long)((ulong)aVal >> width); |
|
} |
|
} |
|
while (++aPos < aLen); |
|
|
|
if ((k += stride) >= top) |
|
{ |
|
if (k >= 64) |
|
{ |
|
break; |
|
} |
|
|
|
/* |
|
* Adjustment for window setups with top == 63, the final bit (if any) is processed |
|
* as the top-bit of a window |
|
*/ |
|
k = 64 - width; |
|
MASK &= MASK << (top - k); |
|
} |
|
|
|
/* |
|
* After each position has been checked for all words of A, B is shifted up 1 place |
|
*/ |
|
ShiftUp(c, aLen, bTotal, banks); |
|
} |
|
|
|
int ciPos = ci.Length; |
|
while (--ciPos > 1) |
|
{ |
|
if ((ciPos & 1L) == 0L) |
|
{ |
|
/* |
|
* For even numbers, shift contents and add to the half-position |
|
*/ |
|
AddShiftedUp(c, ci[(uint)ciPos >> 1], c, ci[ciPos], cLen, positions); |
|
} |
|
else |
|
{ |
|
/* |
|
* For odd numbers, 'distribute' contents to the result and the next-lowest position |
|
*/ |
|
Distribute(c, ci[ciPos], ci[ciPos - 1], ci[1], cLen); |
|
} |
|
} |
|
|
|
/* |
|
* Finally the raw answer is collected, reduce it against the reduction coefficients |
|
*/ |
|
return ReduceResult(c, ci[1], cLen, m, ks); |
|
} |
|
|
|
public LongArray ModReduce(int m, int[] ks) |
|
{ |
|
long[] buf = Arrays.Clone(m_ints); |
|
int rLen = ReduceInPlace(buf, 0, buf.Length, m, ks); |
|
return new LongArray(buf, 0, rLen); |
|
} |
|
|
|
public LongArray Multiply(LongArray other, int m, int[] ks) |
|
{ |
|
/* |
|
* Find out the degree of each argument and handle the zero cases |
|
*/ |
|
int aDeg = Degree(); |
|
if (aDeg == 0) |
|
{ |
|
return this; |
|
} |
|
int bDeg = other.Degree(); |
|
if (bDeg == 0) |
|
{ |
|
return other; |
|
} |
|
|
|
/* |
|
* Swap if necessary so that A is the smaller argument |
|
*/ |
|
LongArray A = this, B = other; |
|
if (aDeg > bDeg) |
|
{ |
|
A = other; B = this; |
|
int tmp = aDeg; aDeg = bDeg; bDeg = tmp; |
|
} |
|
|
|
/* |
|
* Establish the word lengths of the arguments and result |
|
*/ |
|
int aLen = (int)((uint)(aDeg + 63) >> 6); |
|
int bLen = (int)((uint)(bDeg + 63) >> 6); |
|
int cLen = (int)((uint)(aDeg + bDeg + 62) >> 6); |
|
|
|
if (aLen == 1) |
|
{ |
|
long a0 = A.m_ints[0]; |
|
if (a0 == 1L) |
|
{ |
|
return B; |
|
} |
|
|
|
/* |
|
* Fast path for small A, with performance dependent only on the number of set bits |
|
*/ |
|
long[] c0 = new long[cLen]; |
|
MultiplyWord(a0, B.m_ints, bLen, c0, 0); |
|
|
|
/* |
|
* Reduce the raw answer against the reduction coefficients |
|
*/ |
|
//return ReduceResult(c0, 0, cLen, m, ks); |
|
return new LongArray(c0, 0, cLen); |
|
} |
|
|
|
/* |
|
* Determine if B will get bigger during shifting |
|
*/ |
|
int bMax = (int)((uint)(bDeg + 7 + 63) >> 6); |
|
|
|
/* |
|
* Lookup table for the offset of each B in the tables |
|
*/ |
|
int[] ti = new int[16]; |
|
|
|
/* |
|
* Precompute table of all 4-bit products of B |
|
*/ |
|
long[] T0 = new long[bMax << 4]; |
|
int tOff = bMax; |
|
ti[1] = tOff; |
|
Array.Copy(B.m_ints, 0, T0, tOff, bLen); |
|
for (int i = 2; i < 16; ++i) |
|
{ |
|
ti[i] = (tOff += bMax); |
|
if ((i & 1) == 0) |
|
{ |
|
ShiftUp(T0, (int)((uint)tOff >> 1), T0, tOff, bMax, 1); |
|
} |
|
else |
|
{ |
|
Add(T0, bMax, T0, tOff - bMax, T0, tOff, bMax); |
|
} |
|
} |
|
|
|
/* |
|
* Second table with all 4-bit products of B shifted 4 bits |
|
*/ |
|
long[] T1 = new long[T0.Length]; |
|
ShiftUp(T0, 0, T1, 0, T0.Length, 4); |
|
// ShiftUp(T0, bMax, T1, bMax, tOff, 4); |
|
|
|
long[] a = A.m_ints; |
|
long[] c = new long[cLen << 3]; |
|
|
|
int MASK = 0xF; |
|
|
|
/* |
|
* Lopez-Dahab (Modified) algorithm |
|
*/ |
|
|
|
for (int aPos = 0; aPos < aLen; ++aPos) |
|
{ |
|
long aVal = a[aPos]; |
|
int cOff = aPos; |
|
for (; ; ) |
|
{ |
|
int u = (int)aVal & MASK; |
|
aVal = (long)((ulong)aVal >> 4); |
|
int v = (int)aVal & MASK; |
|
AddBoth(c, cOff, T0, ti[u], T1, ti[v], bMax); |
|
aVal = (long)((ulong)aVal >> 4); |
|
if (aVal == 0L) |
|
{ |
|
break; |
|
} |
|
cOff += cLen; |
|
} |
|
} |
|
|
|
{ |
|
int cOff = c.Length; |
|
while ((cOff -= cLen) != 0) |
|
{ |
|
AddShiftedUp(c, cOff - cLen, c, cOff, cLen, 8); |
|
} |
|
} |
|
|
|
/* |
|
* Finally the raw answer is collected, reduce it against the reduction coefficients |
|
*/ |
|
//return ReduceResult(c, 0, cLen, m, ks); |
|
return new LongArray(c, 0, cLen); |
|
} |
|
|
|
public void Reduce(int m, int[] ks) |
|
{ |
|
long[] buf = m_ints; |
|
int rLen = ReduceInPlace(buf, 0, buf.Length, m, ks); |
|
if (rLen < buf.Length) |
|
{ |
|
m_ints = new long[rLen]; |
|
Array.Copy(buf, 0, m_ints, 0, rLen); |
|
} |
|
} |
|
|
|
private static LongArray ReduceResult(long[] buf, int off, int len, int m, int[] ks) |
|
{ |
|
int rLen = ReduceInPlace(buf, off, len, m, ks); |
|
return new LongArray(buf, off, rLen); |
|
} |
|
|
|
// private static void deInterleave(long[] x, int xOff, long[] z, int zOff, int count, int rounds) |
|
// { |
|
// for (int i = 0; i < count; ++i) |
|
// { |
|
// z[zOff + i] = deInterleave(x[zOff + i], rounds); |
|
// } |
|
// } |
|
// |
|
// private static long deInterleave(long x, int rounds) |
|
// { |
|
// while (--rounds >= 0) |
|
// { |
|
// x = deInterleave32(x & DEInterleave_MASK) | (deInterleave32((x >>> 1) & DEInterleave_MASK) << 32); |
|
// } |
|
// return x; |
|
// } |
|
// |
|
// private static long deInterleave32(long x) |
|
// { |
|
// x = (x | (x >>> 1)) & 0x3333333333333333L; |
|
// x = (x | (x >>> 2)) & 0x0F0F0F0F0F0F0F0FL; |
|
// x = (x | (x >>> 4)) & 0x00FF00FF00FF00FFL; |
|
// x = (x | (x >>> 8)) & 0x0000FFFF0000FFFFL; |
|
// x = (x | (x >>> 16)) & 0x00000000FFFFFFFFL; |
|
// return x; |
|
// } |
|
|
|
private static int ReduceInPlace(long[] buf, int off, int len, int m, int[] ks) |
|
{ |
|
int mLen = (m + 63) >> 6; |
|
if (len < mLen) |
|
{ |
|
return len; |
|
} |
|
|
|
int numBits = System.Math.Min(len << 6, (m << 1) - 1); // TODO use actual degree? |
|
int excessBits = (len << 6) - numBits; |
|
while (excessBits >= 64) |
|
{ |
|
--len; |
|
excessBits -= 64; |
|
} |
|
|
|
int kLen = ks.Length, kMax = ks[kLen - 1], kNext = kLen > 1 ? ks[kLen - 2] : 0; |
|
int wordWiseLimit = System.Math.Max(m, kMax + 64); |
|
int vectorableWords = (excessBits + System.Math.Min(numBits - wordWiseLimit, m - kNext)) >> 6; |
|
if (vectorableWords > 1) |
|
{ |
|
int vectorWiseWords = len - vectorableWords; |
|
ReduceVectorWise(buf, off, len, vectorWiseWords, m, ks); |
|
while (len > vectorWiseWords) |
|
{ |
|
buf[off + --len] = 0L; |
|
} |
|
numBits = vectorWiseWords << 6; |
|
} |
|
|
|
if (numBits > wordWiseLimit) |
|
{ |
|
ReduceWordWise(buf, off, len, wordWiseLimit, m, ks); |
|
numBits = wordWiseLimit; |
|
} |
|
|
|
if (numBits > m) |
|
{ |
|
ReduceBitWise(buf, off, numBits, m, ks); |
|
} |
|
|
|
return mLen; |
|
} |
|
|
|
private static void ReduceBitWise(long[] buf, int off, int BitLength, int m, int[] ks) |
|
{ |
|
while (--BitLength >= m) |
|
{ |
|
if (TestBit(buf, off, BitLength)) |
|
{ |
|
ReduceBit(buf, off, BitLength, m, ks); |
|
} |
|
} |
|
} |
|
|
|
private static void ReduceBit(long[] buf, int off, int bit, int m, int[] ks) |
|
{ |
|
FlipBit(buf, off, bit); |
|
int n = bit - m; |
|
int j = ks.Length; |
|
while (--j >= 0) |
|
{ |
|
FlipBit(buf, off, ks[j] + n); |
|
} |
|
FlipBit(buf, off, n); |
|
} |
|
|
|
private static void ReduceWordWise(long[] buf, int off, int len, int toBit, int m, int[] ks) |
|
{ |
|
int toPos = (int)((uint)toBit >> 6); |
|
|
|
while (--len > toPos) |
|
{ |
|
long word = buf[off + len]; |
|
if (word != 0) |
|
{ |
|
buf[off + len] = 0; |
|
ReduceWord(buf, off, (len << 6), word, m, ks); |
|
} |
|
} |
|
|
|
{ |
|
int partial = toBit & 0x3F; |
|
long word = (long)((ulong)buf[off + toPos] >> partial); |
|
if (word != 0) |
|
{ |
|
buf[off + toPos] ^= word << partial; |
|
ReduceWord(buf, off, toBit, word, m, ks); |
|
} |
|
} |
|
} |
|
|
|
private static void ReduceWord(long[] buf, int off, int bit, long word, int m, int[] ks) |
|
{ |
|
int offset = bit - m; |
|
int j = ks.Length; |
|
while (--j >= 0) |
|
{ |
|
FlipWord(buf, off, offset + ks[j], word); |
|
} |
|
FlipWord(buf, off, offset, word); |
|
} |
|
|
|
private static void ReduceVectorWise(long[] buf, int off, int len, int words, int m, int[] ks) |
|
{ |
|
/* |
|
* NOTE: It's important we go from highest coefficient to lowest, because for the highest |
|
* one (only) we allow the ranges to partially overlap, and therefore any changes must take |
|
* effect for the subsequent lower coefficients. |
|
*/ |
|
int baseBit = (words << 6) - m; |
|
int j = ks.Length; |
|
while (--j >= 0) |
|
{ |
|
FlipVector(buf, off, buf, off + words, len - words, baseBit + ks[j]); |
|
} |
|
FlipVector(buf, off, buf, off + words, len - words, baseBit); |
|
} |
|
|
|
private static void FlipVector(long[] x, int xOff, long[] y, int yOff, int yLen, int bits) |
|
{ |
|
xOff += (int)((uint)bits >> 6); |
|
bits &= 0x3F; |
|
|
|
if (bits == 0) |
|
{ |
|
Add(x, xOff, y, yOff, yLen); |
|
} |
|
else |
|
{ |
|
long carry = AddShiftedDown(x, xOff + 1, y, yOff, yLen, 64 - bits); |
|
x[xOff] ^= carry; |
|
} |
|
} |
|
|
|
public LongArray ModSquare(int m, int[] ks) |
|
{ |
|
int len = GetUsedLength(); |
|
if (len == 0) |
|
{ |
|
return this; |
|
} |
|
|
|
int _2len = len << 1; |
|
long[] r = new long[_2len]; |
|
|
|
int pos = 0; |
|
while (pos < _2len) |
|
{ |
|
long mi = m_ints[(uint)pos >> 1]; |
|
r[pos++] = Interleave2_32to64((int)mi); |
|
r[pos++] = Interleave2_32to64((int)((ulong)mi >> 32)); |
|
} |
|
|
|
return new LongArray(r, 0, ReduceInPlace(r, 0, r.Length, m, ks)); |
|
} |
|
|
|
public LongArray ModSquareN(int n, int m, int[] ks) |
|
{ |
|
int len = GetUsedLength(); |
|
if (len == 0) |
|
{ |
|
return this; |
|
} |
|
|
|
int mLen = (m + 63) >> 6; |
|
long[] r = new long[mLen << 1]; |
|
Array.Copy(m_ints, 0, r, 0, len); |
|
|
|
while (--n >= 0) |
|
{ |
|
SquareInPlace(r, len, m, ks); |
|
len = ReduceInPlace(r, 0, r.Length, m, ks); |
|
} |
|
|
|
return new LongArray(r, 0, len); |
|
} |
|
|
|
public LongArray Square(int m, int[] ks) |
|
{ |
|
int len = GetUsedLength(); |
|
if (len == 0) |
|
{ |
|
return this; |
|
} |
|
|
|
int _2len = len << 1; |
|
long[] r = new long[_2len]; |
|
|
|
int pos = 0; |
|
while (pos < _2len) |
|
{ |
|
long mi = m_ints[(uint)pos >> 1]; |
|
r[pos++] = Interleave2_32to64((int)mi); |
|
r[pos++] = Interleave2_32to64((int)((ulong)mi >> 32)); |
|
} |
|
|
|
return new LongArray(r, 0, r.Length); |
|
} |
|
|
|
private static void SquareInPlace(long[] x, int xLen, int m, int[] ks) |
|
{ |
|
int pos = xLen << 1; |
|
while (--xLen >= 0) |
|
{ |
|
long xVal = x[xLen]; |
|
x[--pos] = Interleave2_32to64((int)((ulong)xVal >> 32)); |
|
x[--pos] = Interleave2_32to64((int)xVal); |
|
} |
|
} |
|
|
|
private static void Interleave(long[] x, int xOff, long[] z, int zOff, int count, int width) |
|
{ |
|
switch (width) |
|
{ |
|
case 3: |
|
Interleave3(x, xOff, z, zOff, count); |
|
break; |
|
case 5: |
|
Interleave5(x, xOff, z, zOff, count); |
|
break; |
|
case 7: |
|
Interleave7(x, xOff, z, zOff, count); |
|
break; |
|
default: |
|
Interleave2_n(x, xOff, z, zOff, count, BitLengths[width] - 1); |
|
break; |
|
} |
|
} |
|
|
|
private static void Interleave3(long[] x, int xOff, long[] z, int zOff, int count) |
|
{ |
|
for (int i = 0; i < count; ++i) |
|
{ |
|
z[zOff + i] = Interleave3(x[xOff + i]); |
|
} |
|
} |
|
|
|
private static long Interleave3(long x) |
|
{ |
|
long z = x & (1L << 63); |
|
return z |
|
| Interleave3_21to63((int)x & 0x1FFFFF) |
|
| Interleave3_21to63((int)((ulong)x >> 21) & 0x1FFFFF) << 1 |
|
| Interleave3_21to63((int)((ulong)x >> 42) & 0x1FFFFF) << 2; |
|
|
|
// int zPos = 0, wPos = 0, xPos = 0; |
|
// for (;;) |
|
// { |
|
// z |= ((x >>> xPos) & 1L) << zPos; |
|
// if (++zPos == 63) |
|
// { |
|
// String sz2 = Long.toBinaryString(z); |
|
// return z; |
|
// } |
|
// if ((xPos += 21) >= 63) |
|
// { |
|
// xPos = ++wPos; |
|
// } |
|
// } |
|
} |
|
|
|
private static long Interleave3_21to63(int x) |
|
{ |
|
int r00 = INTERLEAVE3_TABLE[x & 0x7F]; |
|
int r21 = INTERLEAVE3_TABLE[((uint)x >> 7) & 0x7F]; |
|
int r42 = INTERLEAVE3_TABLE[(uint)x >> 14]; |
|
return (r42 & 0xFFFFFFFFL) << 42 | (r21 & 0xFFFFFFFFL) << 21 | (r00 & 0xFFFFFFFFL); |
|
} |
|
|
|
private static void Interleave5(long[] x, int xOff, long[] z, int zOff, int count) |
|
{ |
|
for (int i = 0; i < count; ++i) |
|
{ |
|
z[zOff + i] = Interleave5(x[xOff + i]); |
|
} |
|
} |
|
|
|
private static long Interleave5(long x) |
|
{ |
|
return Interleave3_13to65((int)x & 0x1FFF) |
|
| Interleave3_13to65((int)((ulong)x >> 13) & 0x1FFF) << 1 |
|
| Interleave3_13to65((int)((ulong)x >> 26) & 0x1FFF) << 2 |
|
| Interleave3_13to65((int)((ulong)x >> 39) & 0x1FFF) << 3 |
|
| Interleave3_13to65((int)((ulong)x >> 52) & 0x1FFF) << 4; |
|
|
|
// long z = 0; |
|
// int zPos = 0, wPos = 0, xPos = 0; |
|
// for (;;) |
|
// { |
|
// z |= ((x >>> xPos) & 1L) << zPos; |
|
// if (++zPos == 64) |
|
// { |
|
// return z; |
|
// } |
|
// if ((xPos += 13) >= 64) |
|
// { |
|
// xPos = ++wPos; |
|
// } |
|
// } |
|
} |
|
|
|
private static long Interleave3_13to65(int x) |
|
{ |
|
int r00 = INTERLEAVE5_TABLE[x & 0x7F]; |
|
int r35 = INTERLEAVE5_TABLE[(uint)x >> 7]; |
|
return (r35 & 0xFFFFFFFFL) << 35 | (r00 & 0xFFFFFFFFL); |
|
} |
|
|
|
private static void Interleave7(long[] x, int xOff, long[] z, int zOff, int count) |
|
{ |
|
for (int i = 0; i < count; ++i) |
|
{ |
|
z[zOff + i] = Interleave7(x[xOff + i]); |
|
} |
|
} |
|
|
|
private static long Interleave7(long x) |
|
{ |
|
long z = x & (1L << 63); |
|
return z |
|
| INTERLEAVE7_TABLE[(int)x & 0x1FF] |
|
| INTERLEAVE7_TABLE[(int)((ulong)x >> 9) & 0x1FF] << 1 |
|
| INTERLEAVE7_TABLE[(int)((ulong)x >> 18) & 0x1FF] << 2 |
|
| INTERLEAVE7_TABLE[(int)((ulong)x >> 27) & 0x1FF] << 3 |
|
| INTERLEAVE7_TABLE[(int)((ulong)x >> 36) & 0x1FF] << 4 |
|
| INTERLEAVE7_TABLE[(int)((ulong)x >> 45) & 0x1FF] << 5 |
|
| INTERLEAVE7_TABLE[(int)((ulong)x >> 54) & 0x1FF] << 6; |
|
|
|
// int zPos = 0, wPos = 0, xPos = 0; |
|
// for (;;) |
|
// { |
|
// z |= ((x >>> xPos) & 1L) << zPos; |
|
// if (++zPos == 63) |
|
// { |
|
// return z; |
|
// } |
|
// if ((xPos += 9) >= 63) |
|
// { |
|
// xPos = ++wPos; |
|
// } |
|
// } |
|
} |
|
|
|
private static void Interleave2_n(long[] x, int xOff, long[] z, int zOff, int count, int rounds) |
|
{ |
|
for (int i = 0; i < count; ++i) |
|
{ |
|
z[zOff + i] = Interleave2_n(x[xOff + i], rounds); |
|
} |
|
} |
|
|
|
private static long Interleave2_n(long x, int rounds) |
|
{ |
|
while (rounds > 1) |
|
{ |
|
rounds -= 2; |
|
x = Interleave4_16to64((int)x & 0xFFFF) |
|
| Interleave4_16to64((int)((ulong)x >> 16) & 0xFFFF) << 1 |
|
| Interleave4_16to64((int)((ulong)x >> 32) & 0xFFFF) << 2 |
|
| Interleave4_16to64((int)((ulong)x >> 48) & 0xFFFF) << 3; |
|
} |
|
if (rounds > 0) |
|
{ |
|
x = Interleave2_32to64((int)x) | Interleave2_32to64((int)((ulong)x >> 32)) << 1; |
|
} |
|
return x; |
|
} |
|
|
|
private static long Interleave4_16to64(int x) |
|
{ |
|
int r00 = INTERLEAVE4_TABLE[x & 0xFF]; |
|
int r32 = INTERLEAVE4_TABLE[(uint)x >> 8]; |
|
return (r32 & 0xFFFFFFFFL) << 32 | (r00 & 0xFFFFFFFFL); |
|
} |
|
|
|
private static long Interleave2_32to64(int x) |
|
{ |
|
int r00 = INTERLEAVE2_TABLE[x & 0xFF] | INTERLEAVE2_TABLE[((uint)x >> 8) & 0xFF] << 16; |
|
int r32 = INTERLEAVE2_TABLE[((uint)x >> 16) & 0xFF] | INTERLEAVE2_TABLE[(uint)x >> 24] << 16; |
|
return (r32 & 0xFFFFFFFFL) << 32 | (r00 & 0xFFFFFFFFL); |
|
} |
|
|
|
// private static LongArray ExpItohTsujii2(LongArray B, int n, int m, int[] ks) |
|
// { |
|
// LongArray t1 = B, t3 = new LongArray(new long[]{ 1L }); |
|
// int scale = 1; |
|
// |
|
// int numTerms = n; |
|
// while (numTerms > 1) |
|
// { |
|
// if ((numTerms & 1) != 0) |
|
// { |
|
// t3 = t3.ModMultiply(t1, m, ks); |
|
// t1 = t1.modSquareN(scale, m, ks); |
|
// } |
|
// |
|
// LongArray t2 = t1.modSquareN(scale, m, ks); |
|
// t1 = t1.ModMultiply(t2, m, ks); |
|
// numTerms >>>= 1; scale <<= 1; |
|
// } |
|
// |
|
// return t3.ModMultiply(t1, m, ks); |
|
// } |
|
// |
|
// private static LongArray ExpItohTsujii23(LongArray B, int n, int m, int[] ks) |
|
// { |
|
// LongArray t1 = B, t3 = new LongArray(new long[]{ 1L }); |
|
// int scale = 1; |
|
// |
|
// int numTerms = n; |
|
// while (numTerms > 1) |
|
// { |
|
// bool m03 = numTerms % 3 == 0; |
|
// bool m14 = !m03 && (numTerms & 1) != 0; |
|
// |
|
// if (m14) |
|
// { |
|
// t3 = t3.ModMultiply(t1, m, ks); |
|
// t1 = t1.modSquareN(scale, m, ks); |
|
// } |
|
// |
|
// LongArray t2 = t1.modSquareN(scale, m, ks); |
|
// t1 = t1.ModMultiply(t2, m, ks); |
|
// |
|
// if (m03) |
|
// { |
|
// t2 = t2.modSquareN(scale, m, ks); |
|
// t1 = t1.ModMultiply(t2, m, ks); |
|
// numTerms /= 3; scale *= 3; |
|
// } |
|
// else |
|
// { |
|
// numTerms >>>= 1; scale <<= 1; |
|
// } |
|
// } |
|
// |
|
// return t3.ModMultiply(t1, m, ks); |
|
// } |
|
// |
|
// private static LongArray ExpItohTsujii235(LongArray B, int n, int m, int[] ks) |
|
// { |
|
// LongArray t1 = B, t4 = new LongArray(new long[]{ 1L }); |
|
// int scale = 1; |
|
// |
|
// int numTerms = n; |
|
// while (numTerms > 1) |
|
// { |
|
// if (numTerms % 5 == 0) |
|
// { |
|
//// t1 = ExpItohTsujii23(t1, 5, m, ks); |
|
// |
|
// LongArray t3 = t1; |
|
// t1 = t1.modSquareN(scale, m, ks); |
|
// |
|
// LongArray t2 = t1.modSquareN(scale, m, ks); |
|
// t1 = t1.ModMultiply(t2, m, ks); |
|
// t2 = t1.modSquareN(scale << 1, m, ks); |
|
// t1 = t1.ModMultiply(t2, m, ks); |
|
// |
|
// t1 = t1.ModMultiply(t3, m, ks); |
|
// |
|
// numTerms /= 5; scale *= 5; |
|
// continue; |
|
// } |
|
// |
|
// bool m03 = numTerms % 3 == 0; |
|
// bool m14 = !m03 && (numTerms & 1) != 0; |
|
// |
|
// if (m14) |
|
// { |
|
// t4 = t4.ModMultiply(t1, m, ks); |
|
// t1 = t1.modSquareN(scale, m, ks); |
|
// } |
|
// |
|
// LongArray t2 = t1.modSquareN(scale, m, ks); |
|
// t1 = t1.ModMultiply(t2, m, ks); |
|
// |
|
// if (m03) |
|
// { |
|
// t2 = t2.modSquareN(scale, m, ks); |
|
// t1 = t1.ModMultiply(t2, m, ks); |
|
// numTerms /= 3; scale *= 3; |
|
// } |
|
// else |
|
// { |
|
// numTerms >>>= 1; scale <<= 1; |
|
// } |
|
// } |
|
// |
|
// return t4.ModMultiply(t1, m, ks); |
|
// } |
|
|
|
public LongArray ModInverse(int m, int[] ks) |
|
{ |
|
/* |
|
* Fermat's Little Theorem |
|
*/ |
|
// LongArray A = this; |
|
// LongArray B = A.modSquare(m, ks); |
|
// LongArray R0 = B, R1 = B; |
|
// for (int i = 2; i < m; ++i) |
|
// { |
|
// R1 = R1.modSquare(m, ks); |
|
// R0 = R0.ModMultiply(R1, m, ks); |
|
// } |
|
// |
|
// return R0; |
|
|
|
/* |
|
* Itoh-Tsujii |
|
*/ |
|
// LongArray B = modSquare(m, ks); |
|
// switch (m) |
|
// { |
|
// case 409: |
|
// return ExpItohTsujii23(B, m - 1, m, ks); |
|
// case 571: |
|
// return ExpItohTsujii235(B, m - 1, m, ks); |
|
// case 163: |
|
// case 233: |
|
// case 283: |
|
// default: |
|
// return ExpItohTsujii2(B, m - 1, m, ks); |
|
// } |
|
|
|
/* |
|
* Inversion in F2m using the extended Euclidean algorithm |
|
* |
|
* Input: A nonzero polynomial a(z) of degree at most m-1 |
|
* Output: a(z)^(-1) mod f(z) |
|
*/ |
|
int uzDegree = Degree(); |
|
if (uzDegree == 0) |
|
{ |
|
throw new InvalidOperationException(); |
|
} |
|
if (uzDegree == 1) |
|
{ |
|
return this; |
|
} |
|
|
|
// u(z) := a(z) |
|
LongArray uz = (LongArray)Copy(); |
|
|
|
int t = (m + 63) >> 6; |
|
|
|
// v(z) := f(z) |
|
LongArray vz = new LongArray(t); |
|
ReduceBit(vz.m_ints, 0, m, m, ks); |
|
|
|
// g1(z) := 1, g2(z) := 0 |
|
LongArray g1z = new LongArray(t); |
|
g1z.m_ints[0] = 1L; |
|
LongArray g2z = new LongArray(t); |
|
|
|
int[] uvDeg = new int[]{ uzDegree, m + 1 }; |
|
LongArray[] uv = new LongArray[]{ uz, vz }; |
|
|
|
int[] ggDeg = new int[]{ 1, 0 }; |
|
LongArray[] gg = new LongArray[]{ g1z, g2z }; |
|
|
|
int b = 1; |
|
int duv1 = uvDeg[b]; |
|
int dgg1 = ggDeg[b]; |
|
int j = duv1 - uvDeg[1 - b]; |
|
|
|
for (;;) |
|
{ |
|
if (j < 0) |
|
{ |
|
j = -j; |
|
uvDeg[b] = duv1; |
|
ggDeg[b] = dgg1; |
|
b = 1 - b; |
|
duv1 = uvDeg[b]; |
|
dgg1 = ggDeg[b]; |
|
} |
|
|
|
uv[b].AddShiftedByBitsSafe(uv[1 - b], uvDeg[1 - b], j); |
|
|
|
int duv2 = uv[b].DegreeFrom(duv1); |
|
if (duv2 == 0) |
|
{ |
|
return gg[1 - b]; |
|
} |
|
|
|
{ |
|
int dgg2 = ggDeg[1 - b]; |
|
gg[b].AddShiftedByBitsSafe(gg[1 - b], dgg2, j); |
|
dgg2 += j; |
|
|
|
if (dgg2 > dgg1) |
|
{ |
|
dgg1 = dgg2; |
|
} |
|
else if (dgg2 == dgg1) |
|
{ |
|
dgg1 = gg[b].DegreeFrom(dgg1); |
|
} |
|
} |
|
|
|
j += (duv2 - duv1); |
|
duv1 = duv2; |
|
} |
|
} |
|
|
|
public override bool Equals(object obj) |
|
{ |
|
return Equals(obj as LongArray); |
|
} |
|
|
|
public virtual bool Equals(LongArray other) |
|
{ |
|
if (this == other) |
|
return true; |
|
if (null == other) |
|
return false; |
|
int usedLen = GetUsedLength(); |
|
if (other.GetUsedLength() != usedLen) |
|
{ |
|
return false; |
|
} |
|
for (int i = 0; i < usedLen; i++) |
|
{ |
|
if (m_ints[i] != other.m_ints[i]) |
|
{ |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
public override int GetHashCode() |
|
{ |
|
int usedLen = GetUsedLength(); |
|
int hash = 1; |
|
for (int i = 0; i < usedLen; i++) |
|
{ |
|
long mi = m_ints[i]; |
|
hash *= 31; |
|
hash ^= (int)mi; |
|
hash *= 31; |
|
hash ^= (int)((ulong)mi >> 32); |
|
} |
|
return hash; |
|
} |
|
|
|
public LongArray Copy() |
|
{ |
|
return new LongArray(Arrays.Clone(m_ints)); |
|
} |
|
|
|
public override string ToString() |
|
{ |
|
int i = GetUsedLength(); |
|
if (i == 0) |
|
{ |
|
return "0"; |
|
} |
|
|
|
StringBuilder sb = new StringBuilder(Convert.ToString(m_ints[--i], 2)); |
|
while (--i >= 0) |
|
{ |
|
string s = Convert.ToString(m_ints[i], 2); |
|
|
|
// Add leading zeroes, except for highest significant word |
|
int len = s.Length; |
|
if (len < 64) |
|
{ |
|
sb.Append(ZEROES.Substring(len)); |
|
} |
|
|
|
sb.Append(s); |
|
} |
|
return sb.ToString(); |
|
} |
|
} |
|
} |
|
#pragma warning restore |
|
#endif
|
|
|