You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
473 lines
16 KiB
473 lines
16 KiB
8 months ago
|
// CRC32.cs
|
||
|
// ------------------------------------------------------------------
|
||
|
//
|
||
|
// Copyright (c) 2011 Dino Chiesa.
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// This code module is part of DotNetZip, a zipfile class library.
|
||
|
//
|
||
|
// ------------------------------------------------------------------
|
||
|
//
|
||
|
// This code is licensed under the Microsoft Public License.
|
||
|
// See the file License.txt for the license details.
|
||
|
// More info on: http://dotnetzip.codeplex.com
|
||
|
//
|
||
|
// ------------------------------------------------------------------
|
||
|
//
|
||
|
// Last Saved: <2011-August-02 18:25:54>
|
||
|
//
|
||
|
// ------------------------------------------------------------------
|
||
|
//
|
||
|
// This module defines the CRC32 class, which can do the CRC32 algorithm, using
|
||
|
// arbitrary starting polynomials, and bit reversal. The bit reversal is what
|
||
|
// distinguishes this CRC-32 used in BZip2 from the CRC-32 that is used in PKZIP
|
||
|
// files, or GZIP files. This class does both.
|
||
|
//
|
||
|
// ------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
using System;
|
||
|
using Interop = System.Runtime.InteropServices;
|
||
|
|
||
|
namespace BestHTTP.Decompression.Crc
|
||
|
{
|
||
|
/// <summary>
|
||
|
/// Computes a CRC-32. The CRC-32 algorithm is parameterized - you
|
||
|
/// can set the polynomial and enable or disable bit
|
||
|
/// reversal. This can be used for GZIP, BZip2, or ZIP.
|
||
|
/// </summary>
|
||
|
/// <remarks>
|
||
|
/// This type is used internally by DotNetZip; it is generally not used
|
||
|
/// directly by applications wishing to create, read, or manipulate zip
|
||
|
/// archive files.
|
||
|
/// </remarks>
|
||
|
|
||
|
internal class CRC32
|
||
|
{
|
||
|
/// <summary>
|
||
|
/// Indicates the total number of bytes applied to the CRC.
|
||
|
/// </summary>
|
||
|
public Int64 TotalBytesRead
|
||
|
{
|
||
|
get
|
||
|
{
|
||
|
return _TotalBytesRead;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Indicates the current CRC for all blocks slurped in.
|
||
|
/// </summary>
|
||
|
public Int32 Crc32Result
|
||
|
{
|
||
|
get
|
||
|
{
|
||
|
return unchecked((Int32)(~_register));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Returns the CRC32 for the specified stream.
|
||
|
/// </summary>
|
||
|
/// <param name="input">The stream over which to calculate the CRC32</param>
|
||
|
/// <returns>the CRC32 calculation</returns>
|
||
|
public Int32 GetCrc32(System.IO.Stream input)
|
||
|
{
|
||
|
return GetCrc32AndCopy(input, null);
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Returns the CRC32 for the specified stream, and writes the input into the
|
||
|
/// output stream.
|
||
|
/// </summary>
|
||
|
/// <param name="input">The stream over which to calculate the CRC32</param>
|
||
|
/// <param name="output">The stream into which to deflate the input</param>
|
||
|
/// <returns>the CRC32 calculation</returns>
|
||
|
public Int32 GetCrc32AndCopy(System.IO.Stream input, System.IO.Stream output)
|
||
|
{
|
||
|
if (input == null)
|
||
|
throw new Exception("The input stream must not be null.");
|
||
|
|
||
|
unchecked
|
||
|
{
|
||
|
byte[] buffer = new byte[BUFFER_SIZE];
|
||
|
int readSize = BUFFER_SIZE;
|
||
|
|
||
|
_TotalBytesRead = 0;
|
||
|
int count = input.Read(buffer, 0, readSize);
|
||
|
if (output != null) output.Write(buffer, 0, count);
|
||
|
_TotalBytesRead += count;
|
||
|
while (count > 0)
|
||
|
{
|
||
|
SlurpBlock(buffer, 0, count);
|
||
|
count = input.Read(buffer, 0, readSize);
|
||
|
if (output != null) output.Write(buffer, 0, count);
|
||
|
_TotalBytesRead += count;
|
||
|
}
|
||
|
|
||
|
return (Int32)(~_register);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/// <summary>
|
||
|
/// Get the CRC32 for the given (word,byte) combo. This is a
|
||
|
/// computation defined by PKzip for PKZIP 2.0 (weak) encryption.
|
||
|
/// </summary>
|
||
|
/// <param name="W">The word to start with.</param>
|
||
|
/// <param name="B">The byte to combine it with.</param>
|
||
|
/// <returns>The CRC-ized result.</returns>
|
||
|
public Int32 ComputeCrc32(Int32 W, byte B)
|
||
|
{
|
||
|
return _InternalComputeCrc32((UInt32)W, B);
|
||
|
}
|
||
|
|
||
|
internal Int32 _InternalComputeCrc32(UInt32 W, byte B)
|
||
|
{
|
||
|
return (Int32)(crc32Table[(W ^ B) & 0xFF] ^ (W >> 8));
|
||
|
}
|
||
|
|
||
|
|
||
|
/// <summary>
|
||
|
/// Update the value for the running CRC32 using the given block of bytes.
|
||
|
/// This is useful when using the CRC32() class in a Stream.
|
||
|
/// </summary>
|
||
|
/// <param name="block">block of bytes to slurp</param>
|
||
|
/// <param name="offset">starting point in the block</param>
|
||
|
/// <param name="count">how many bytes within the block to slurp</param>
|
||
|
public void SlurpBlock(byte[] block, int offset, int count)
|
||
|
{
|
||
|
if (block == null)
|
||
|
throw new Exception("The data buffer must not be null.");
|
||
|
|
||
|
// bzip algorithm
|
||
|
for (int i = 0; i < count; i++)
|
||
|
{
|
||
|
int x = offset + i;
|
||
|
byte b = block[x];
|
||
|
if (this.reverseBits)
|
||
|
{
|
||
|
UInt32 temp = (_register >> 24) ^ b;
|
||
|
_register = (_register << 8) ^ crc32Table[temp];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
UInt32 temp = (_register & 0x000000FF) ^ b;
|
||
|
_register = (_register >> 8) ^ crc32Table[temp];
|
||
|
}
|
||
|
}
|
||
|
_TotalBytesRead += count;
|
||
|
}
|
||
|
|
||
|
|
||
|
/// <summary>
|
||
|
/// Process one byte in the CRC.
|
||
|
/// </summary>
|
||
|
/// <param name = "b">the byte to include into the CRC . </param>
|
||
|
public void UpdateCRC(byte b)
|
||
|
{
|
||
|
if (this.reverseBits)
|
||
|
{
|
||
|
UInt32 temp = (_register >> 24) ^ b;
|
||
|
_register = (_register << 8) ^ crc32Table[temp];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
UInt32 temp = (_register & 0x000000FF) ^ b;
|
||
|
_register = (_register >> 8) ^ crc32Table[temp];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Process a run of N identical bytes into the CRC.
|
||
|
/// </summary>
|
||
|
/// <remarks>
|
||
|
/// <para>
|
||
|
/// This method serves as an optimization for updating the CRC when a
|
||
|
/// run of identical bytes is found. Rather than passing in a buffer of
|
||
|
/// length n, containing all identical bytes b, this method accepts the
|
||
|
/// byte value and the length of the (virtual) buffer - the length of
|
||
|
/// the run.
|
||
|
/// </para>
|
||
|
/// </remarks>
|
||
|
/// <param name = "b">the byte to include into the CRC. </param>
|
||
|
/// <param name = "n">the number of times that byte should be repeated. </param>
|
||
|
public void UpdateCRC(byte b, int n)
|
||
|
{
|
||
|
while (n-- > 0)
|
||
|
{
|
||
|
if (this.reverseBits)
|
||
|
{
|
||
|
uint temp = (_register >> 24) ^ b;
|
||
|
_register = (_register << 8) ^ crc32Table[(temp >= 0)
|
||
|
? temp
|
||
|
: (temp + 256)];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
UInt32 temp = (_register & 0x000000FF) ^ b;
|
||
|
_register = (_register >> 8) ^ crc32Table[(temp >= 0)
|
||
|
? temp
|
||
|
: (temp + 256)];
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
private static uint ReverseBits(uint data)
|
||
|
{
|
||
|
unchecked
|
||
|
{
|
||
|
uint ret = data;
|
||
|
ret = (ret & 0x55555555) << 1 | (ret >> 1) & 0x55555555;
|
||
|
ret = (ret & 0x33333333) << 2 | (ret >> 2) & 0x33333333;
|
||
|
ret = (ret & 0x0F0F0F0F) << 4 | (ret >> 4) & 0x0F0F0F0F;
|
||
|
ret = (ret << 24) | ((ret & 0xFF00) << 8) | ((ret >> 8) & 0xFF00) | (ret >> 24);
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private static byte ReverseBits(byte data)
|
||
|
{
|
||
|
unchecked
|
||
|
{
|
||
|
uint u = (uint)data * 0x00020202;
|
||
|
uint m = 0x01044010;
|
||
|
uint s = u & m;
|
||
|
uint t = (u << 2) & (m << 1);
|
||
|
return (byte)((0x01001001 * (s + t)) >> 24);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
private void GenerateLookupTable()
|
||
|
{
|
||
|
crc32Table = new UInt32[256];
|
||
|
unchecked
|
||
|
{
|
||
|
UInt32 dwCrc;
|
||
|
byte i = 0;
|
||
|
do
|
||
|
{
|
||
|
dwCrc = i;
|
||
|
for (byte j = 8; j > 0; j--)
|
||
|
{
|
||
|
if ((dwCrc & 1) == 1)
|
||
|
{
|
||
|
dwCrc = (dwCrc >> 1) ^ dwPolynomial;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
dwCrc >>= 1;
|
||
|
}
|
||
|
}
|
||
|
if (reverseBits)
|
||
|
{
|
||
|
crc32Table[ReverseBits(i)] = ReverseBits(dwCrc);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
crc32Table[i] = dwCrc;
|
||
|
}
|
||
|
i++;
|
||
|
} while (i!=0);
|
||
|
}
|
||
|
|
||
|
#if VERBOSE
|
||
|
Console.WriteLine();
|
||
|
Console.WriteLine("private static readonly UInt32[] crc32Table = {");
|
||
|
for (int i = 0; i < crc32Table.Length; i+=4)
|
||
|
{
|
||
|
Console.Write(" ");
|
||
|
for (int j=0; j < 4; j++)
|
||
|
{
|
||
|
Console.Write(" 0x{0:X8}U,", crc32Table[i+j]);
|
||
|
}
|
||
|
Console.WriteLine();
|
||
|
}
|
||
|
Console.WriteLine("};");
|
||
|
Console.WriteLine();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
private uint gf2_matrix_times(uint[] matrix, uint vec)
|
||
|
{
|
||
|
uint sum = 0;
|
||
|
int i=0;
|
||
|
while (vec != 0)
|
||
|
{
|
||
|
if ((vec & 0x01)== 0x01)
|
||
|
sum ^= matrix[i];
|
||
|
vec >>= 1;
|
||
|
i++;
|
||
|
}
|
||
|
return sum;
|
||
|
}
|
||
|
|
||
|
private void gf2_matrix_square(uint[] square, uint[] mat)
|
||
|
{
|
||
|
for (int i = 0; i < 32; i++)
|
||
|
square[i] = gf2_matrix_times(mat, mat[i]);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/// <summary>
|
||
|
/// Combines the given CRC32 value with the current running total.
|
||
|
/// </summary>
|
||
|
/// <remarks>
|
||
|
/// This is useful when using a divide-and-conquer approach to
|
||
|
/// calculating a CRC. Multiple threads can each calculate a
|
||
|
/// CRC32 on a segment of the data, and then combine the
|
||
|
/// individual CRC32 values at the end.
|
||
|
/// </remarks>
|
||
|
/// <param name="crc">the crc value to be combined with this one</param>
|
||
|
/// <param name="length">the length of data the CRC value was calculated on</param>
|
||
|
public void Combine(int crc, int length)
|
||
|
{
|
||
|
uint[] even = new uint[32]; // even-power-of-two zeros operator
|
||
|
uint[] odd = new uint[32]; // odd-power-of-two zeros operator
|
||
|
|
||
|
if (length == 0)
|
||
|
return;
|
||
|
|
||
|
uint crc1= ~_register;
|
||
|
uint crc2= (uint) crc;
|
||
|
|
||
|
// put operator for one zero bit in odd
|
||
|
odd[0] = this.dwPolynomial; // the CRC-32 polynomial
|
||
|
uint row = 1;
|
||
|
for (int i = 1; i < 32; i++)
|
||
|
{
|
||
|
odd[i] = row;
|
||
|
row <<= 1;
|
||
|
}
|
||
|
|
||
|
// put operator for two zero bits in even
|
||
|
gf2_matrix_square(even, odd);
|
||
|
|
||
|
// put operator for four zero bits in odd
|
||
|
gf2_matrix_square(odd, even);
|
||
|
|
||
|
uint len2 = (uint) length;
|
||
|
|
||
|
// apply len2 zeros to crc1 (first square will put the operator for one
|
||
|
// zero byte, eight zero bits, in even)
|
||
|
do {
|
||
|
// apply zeros operator for this bit of len2
|
||
|
gf2_matrix_square(even, odd);
|
||
|
|
||
|
if ((len2 & 1)== 1)
|
||
|
crc1 = gf2_matrix_times(even, crc1);
|
||
|
len2 >>= 1;
|
||
|
|
||
|
if (len2 == 0)
|
||
|
break;
|
||
|
|
||
|
// another iteration of the loop with odd and even swapped
|
||
|
gf2_matrix_square(odd, even);
|
||
|
if ((len2 & 1)==1)
|
||
|
crc1 = gf2_matrix_times(odd, crc1);
|
||
|
len2 >>= 1;
|
||
|
|
||
|
|
||
|
} while (len2 != 0);
|
||
|
|
||
|
crc1 ^= crc2;
|
||
|
|
||
|
_register= ~crc1;
|
||
|
|
||
|
//return (int) crc1;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
|
||
|
/// <summary>
|
||
|
/// Create an instance of the CRC32 class using the default settings: no
|
||
|
/// bit reversal, and a polynomial of 0xEDB88320.
|
||
|
/// </summary>
|
||
|
public CRC32() : this(false)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Create an instance of the CRC32 class, specifying whether to reverse
|
||
|
/// data bits or not.
|
||
|
/// </summary>
|
||
|
/// <param name='reverseBits'>
|
||
|
/// specify true if the instance should reverse data bits.
|
||
|
/// </param>
|
||
|
/// <remarks>
|
||
|
/// <para>
|
||
|
/// In the CRC-32 used by BZip2, the bits are reversed. Therefore if you
|
||
|
/// want a CRC32 with compatibility with BZip2, you should pass true
|
||
|
/// here. In the CRC-32 used by GZIP and PKZIP, the bits are not
|
||
|
/// reversed; Therefore if you want a CRC32 with compatibility with
|
||
|
/// those, you should pass false.
|
||
|
/// </para>
|
||
|
/// </remarks>
|
||
|
public CRC32(bool reverseBits) :
|
||
|
this( unchecked((int)0xEDB88320), reverseBits)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
|
||
|
/// <summary>
|
||
|
/// Create an instance of the CRC32 class, specifying the polynomial and
|
||
|
/// whether to reverse data bits or not.
|
||
|
/// </summary>
|
||
|
/// <param name='polynomial'>
|
||
|
/// The polynomial to use for the CRC, expressed in the reversed (LSB)
|
||
|
/// format: the highest ordered bit in the polynomial value is the
|
||
|
/// coefficient of the 0th power; the second-highest order bit is the
|
||
|
/// coefficient of the 1 power, and so on. Expressed this way, the
|
||
|
/// polynomial for the CRC-32C used in IEEE 802.3, is 0xEDB88320.
|
||
|
/// </param>
|
||
|
/// <param name='reverseBits'>
|
||
|
/// specify true if the instance should reverse data bits.
|
||
|
/// </param>
|
||
|
///
|
||
|
/// <remarks>
|
||
|
/// <para>
|
||
|
/// In the CRC-32 used by BZip2, the bits are reversed. Therefore if you
|
||
|
/// want a CRC32 with compatibility with BZip2, you should pass true
|
||
|
/// here for the <c>reverseBits</c> parameter. In the CRC-32 used by
|
||
|
/// GZIP and PKZIP, the bits are not reversed; Therefore if you want a
|
||
|
/// CRC32 with compatibility with those, you should pass false for the
|
||
|
/// <c>reverseBits</c> parameter.
|
||
|
/// </para>
|
||
|
/// </remarks>
|
||
|
public CRC32(int polynomial, bool reverseBits)
|
||
|
{
|
||
|
this.reverseBits = reverseBits;
|
||
|
this.dwPolynomial = (uint) polynomial;
|
||
|
this.GenerateLookupTable();
|
||
|
}
|
||
|
|
||
|
/// <summary>
|
||
|
/// Reset the CRC-32 class - clear the CRC "remainder register."
|
||
|
/// </summary>
|
||
|
/// <remarks>
|
||
|
/// <para>
|
||
|
/// Use this when employing a single instance of this class to compute
|
||
|
/// multiple, distinct CRCs on multiple, distinct data blocks.
|
||
|
/// </para>
|
||
|
/// </remarks>
|
||
|
public void Reset()
|
||
|
{
|
||
|
_register = 0xFFFFFFFFU;
|
||
|
}
|
||
|
|
||
|
// private member vars
|
||
|
private UInt32 dwPolynomial;
|
||
|
private Int64 _TotalBytesRead;
|
||
|
private bool reverseBits;
|
||
|
private UInt32[] crc32Table;
|
||
|
private const int BUFFER_SIZE = 8192;
|
||
|
private UInt32 _register = 0xFFFFFFFFU;
|
||
|
}
|
||
|
}
|