You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
366 lines
11 KiB
366 lines
11 KiB
11 months ago
|
#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
|
||
|
#pragma warning disable
|
||
|
using System;
|
||
|
|
||
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters;
|
||
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities;
|
||
|
|
||
|
namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Engines
|
||
|
{
|
||
|
/**
|
||
|
* An RC6 engine.
|
||
|
*/
|
||
|
public class RC6Engine
|
||
|
: IBlockCipher
|
||
|
{
|
||
|
private static readonly int wordSize = 32;
|
||
|
private static readonly int bytesPerWord = wordSize / 8;
|
||
|
|
||
|
/*
|
||
|
* the number of rounds to perform
|
||
|
*/
|
||
|
private static readonly int _noRounds = 20;
|
||
|
|
||
|
/*
|
||
|
* the expanded key array of size 2*(rounds + 1)
|
||
|
*/
|
||
|
private int [] _S;
|
||
|
|
||
|
/*
|
||
|
* our "magic constants" for wordSize 32
|
||
|
*
|
||
|
* Pw = Odd((e-2) * 2^wordsize)
|
||
|
* Qw = Odd((o-2) * 2^wordsize)
|
||
|
*
|
||
|
* where e is the base of natural logarithms (2.718281828...)
|
||
|
* and o is the golden ratio (1.61803398...)
|
||
|
*/
|
||
|
private static readonly int P32 = unchecked((int) 0xb7e15163);
|
||
|
private static readonly int Q32 = unchecked((int) 0x9e3779b9);
|
||
|
|
||
|
private static readonly int LGW = 5; // log2(32)
|
||
|
|
||
|
private bool forEncryption;
|
||
|
|
||
|
/**
|
||
|
* Create an instance of the RC6 encryption algorithm
|
||
|
* and set some defaults
|
||
|
*/
|
||
|
public RC6Engine()
|
||
|
{
|
||
|
// _S = null;
|
||
|
}
|
||
|
|
||
|
public virtual string AlgorithmName
|
||
|
{
|
||
|
get { return "RC6"; }
|
||
|
}
|
||
|
|
||
|
public virtual bool IsPartialBlockOkay
|
||
|
{
|
||
|
get { return false; }
|
||
|
}
|
||
|
|
||
|
public virtual int GetBlockSize()
|
||
|
{
|
||
|
return 4 * bytesPerWord;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* initialise a RC5-32 cipher.
|
||
|
*
|
||
|
* @param forEncryption whether or not we are for encryption.
|
||
|
* @param parameters the parameters required to set up the cipher.
|
||
|
* @exception ArgumentException if the parameters argument is
|
||
|
* inappropriate.
|
||
|
*/
|
||
|
public virtual void Init(
|
||
|
bool forEncryption,
|
||
|
ICipherParameters parameters)
|
||
|
{
|
||
|
if (!(parameters is KeyParameter))
|
||
|
throw new ArgumentException("invalid parameter passed to RC6 init - " + BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities.Platform.GetTypeName(parameters));
|
||
|
|
||
|
this.forEncryption = forEncryption;
|
||
|
|
||
|
KeyParameter p = (KeyParameter)parameters;
|
||
|
SetKey(p.GetKey());
|
||
|
}
|
||
|
|
||
|
public virtual int ProcessBlock(
|
||
|
byte[] input,
|
||
|
int inOff,
|
||
|
byte[] output,
|
||
|
int outOff)
|
||
|
{
|
||
|
int blockSize = GetBlockSize();
|
||
|
if (_S == null)
|
||
|
throw new InvalidOperationException("RC6 engine not initialised");
|
||
|
|
||
|
Check.DataLength(input, inOff, blockSize, "input buffer too short");
|
||
|
Check.OutputLength(output, outOff, blockSize, "output buffer too short");
|
||
|
|
||
|
return (forEncryption)
|
||
|
? EncryptBlock(input, inOff, output, outOff)
|
||
|
: DecryptBlock(input, inOff, output, outOff);
|
||
|
}
|
||
|
|
||
|
public virtual void Reset()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Re-key the cipher.
|
||
|
*
|
||
|
* @param inKey the key to be used
|
||
|
*/
|
||
|
private void SetKey(
|
||
|
byte[] key)
|
||
|
{
|
||
|
//
|
||
|
// KEY EXPANSION:
|
||
|
//
|
||
|
// There are 3 phases to the key expansion.
|
||
|
//
|
||
|
// Phase 1:
|
||
|
// Copy the secret key K[0...b-1] into an array L[0..c-1] of
|
||
|
// c = ceil(b/u), where u = wordSize/8 in little-endian order.
|
||
|
// In other words, we fill up L using u consecutive key bytes
|
||
|
// of K. Any unfilled byte positions in L are zeroed. In the
|
||
|
// case that b = c = 0, set c = 1 and L[0] = 0.
|
||
|
//
|
||
|
// compute number of dwords
|
||
|
int c = (key.Length + (bytesPerWord - 1)) / bytesPerWord;
|
||
|
if (c == 0)
|
||
|
{
|
||
|
c = 1;
|
||
|
}
|
||
|
int[] L = new int[(key.Length + bytesPerWord - 1) / bytesPerWord];
|
||
|
|
||
|
// load all key bytes into array of key dwords
|
||
|
for (int i = key.Length - 1; i >= 0; i--)
|
||
|
{
|
||
|
L[i / bytesPerWord] = (L[i / bytesPerWord] << 8) + (key[i] & 0xff);
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Phase 2:
|
||
|
// Key schedule is placed in a array of 2+2*ROUNDS+2 = 44 dwords.
|
||
|
// Initialize S to a particular fixed pseudo-random bit pattern
|
||
|
// using an arithmetic progression modulo 2^wordsize determined
|
||
|
// by the magic numbers, Pw & Qw.
|
||
|
//
|
||
|
_S = new int[2+2*_noRounds+2];
|
||
|
|
||
|
_S[0] = P32;
|
||
|
for (int i=1; i < _S.Length; i++)
|
||
|
{
|
||
|
_S[i] = (_S[i-1] + Q32);
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Phase 3:
|
||
|
// Mix in the user's secret key in 3 passes over the arrays S & L.
|
||
|
// The max of the arrays sizes is used as the loop control
|
||
|
//
|
||
|
int iter;
|
||
|
|
||
|
if (L.Length > _S.Length)
|
||
|
{
|
||
|
iter = 3 * L.Length;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
iter = 3 * _S.Length;
|
||
|
}
|
||
|
|
||
|
int A = 0;
|
||
|
int B = 0;
|
||
|
int ii = 0, jj = 0;
|
||
|
|
||
|
for (int k = 0; k < iter; k++)
|
||
|
{
|
||
|
A = _S[ii] = RotateLeft(_S[ii] + A + B, 3);
|
||
|
B = L[jj] = RotateLeft( L[jj] + A + B, A+B);
|
||
|
ii = (ii+1) % _S.Length;
|
||
|
jj = (jj+1) % L.Length;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private int EncryptBlock(
|
||
|
byte[] input,
|
||
|
int inOff,
|
||
|
byte[] outBytes,
|
||
|
int outOff)
|
||
|
{
|
||
|
// load A,B,C and D registers from in.
|
||
|
int A = BytesToWord(input, inOff);
|
||
|
int B = BytesToWord(input, inOff + bytesPerWord);
|
||
|
int C = BytesToWord(input, inOff + bytesPerWord*2);
|
||
|
int D = BytesToWord(input, inOff + bytesPerWord*3);
|
||
|
|
||
|
// Do pseudo-round #0: pre-whitening of B and D
|
||
|
B += _S[0];
|
||
|
D += _S[1];
|
||
|
|
||
|
// perform round #1,#2 ... #ROUNDS of encryption
|
||
|
for (int i = 1; i <= _noRounds; i++)
|
||
|
{
|
||
|
int t = 0,u = 0;
|
||
|
|
||
|
t = B*(2*B+1);
|
||
|
t = RotateLeft(t,5);
|
||
|
|
||
|
u = D*(2*D+1);
|
||
|
u = RotateLeft(u,5);
|
||
|
|
||
|
A ^= t;
|
||
|
A = RotateLeft(A,u);
|
||
|
A += _S[2*i];
|
||
|
|
||
|
C ^= u;
|
||
|
C = RotateLeft(C,t);
|
||
|
C += _S[2*i+1];
|
||
|
|
||
|
int temp = A;
|
||
|
A = B;
|
||
|
B = C;
|
||
|
C = D;
|
||
|
D = temp;
|
||
|
}
|
||
|
// do pseudo-round #(ROUNDS+1) : post-whitening of A and C
|
||
|
A += _S[2*_noRounds+2];
|
||
|
C += _S[2*_noRounds+3];
|
||
|
|
||
|
// store A, B, C and D registers to out
|
||
|
WordToBytes(A, outBytes, outOff);
|
||
|
WordToBytes(B, outBytes, outOff + bytesPerWord);
|
||
|
WordToBytes(C, outBytes, outOff + bytesPerWord*2);
|
||
|
WordToBytes(D, outBytes, outOff + bytesPerWord*3);
|
||
|
|
||
|
return 4 * bytesPerWord;
|
||
|
}
|
||
|
|
||
|
private int DecryptBlock(
|
||
|
byte[] input,
|
||
|
int inOff,
|
||
|
byte[] outBytes,
|
||
|
int outOff)
|
||
|
{
|
||
|
// load A,B,C and D registers from out.
|
||
|
int A = BytesToWord(input, inOff);
|
||
|
int B = BytesToWord(input, inOff + bytesPerWord);
|
||
|
int C = BytesToWord(input, inOff + bytesPerWord*2);
|
||
|
int D = BytesToWord(input, inOff + bytesPerWord*3);
|
||
|
|
||
|
// Undo pseudo-round #(ROUNDS+1) : post whitening of A and C
|
||
|
C -= _S[2*_noRounds+3];
|
||
|
A -= _S[2*_noRounds+2];
|
||
|
|
||
|
// Undo round #ROUNDS, .., #2,#1 of encryption
|
||
|
for (int i = _noRounds; i >= 1; i--)
|
||
|
{
|
||
|
int t=0,u = 0;
|
||
|
|
||
|
int temp = D;
|
||
|
D = C;
|
||
|
C = B;
|
||
|
B = A;
|
||
|
A = temp;
|
||
|
|
||
|
t = B*(2*B+1);
|
||
|
t = RotateLeft(t, LGW);
|
||
|
|
||
|
u = D*(2*D+1);
|
||
|
u = RotateLeft(u, LGW);
|
||
|
|
||
|
C -= _S[2*i+1];
|
||
|
C = RotateRight(C,t);
|
||
|
C ^= u;
|
||
|
|
||
|
A -= _S[2*i];
|
||
|
A = RotateRight(A,u);
|
||
|
A ^= t;
|
||
|
|
||
|
}
|
||
|
// Undo pseudo-round #0: pre-whitening of B and D
|
||
|
D -= _S[1];
|
||
|
B -= _S[0];
|
||
|
|
||
|
WordToBytes(A, outBytes, outOff);
|
||
|
WordToBytes(B, outBytes, outOff + bytesPerWord);
|
||
|
WordToBytes(C, outBytes, outOff + bytesPerWord*2);
|
||
|
WordToBytes(D, outBytes, outOff + bytesPerWord*3);
|
||
|
|
||
|
return 4 * bytesPerWord;
|
||
|
}
|
||
|
|
||
|
|
||
|
//////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// PRIVATE Helper Methods
|
||
|
//
|
||
|
//////////////////////////////////////////////////////////////
|
||
|
|
||
|
/**
|
||
|
* Perform a left "spin" of the word. The rotation of the given
|
||
|
* word <em>x</em> is rotated left by <em>y</em> bits.
|
||
|
* Only the <em>lg(wordSize)</em> low-order bits of <em>y</em>
|
||
|
* are used to determine the rotation amount. Here it is
|
||
|
* assumed that the wordsize used is a power of 2.
|
||
|
*
|
||
|
* @param x word to rotate
|
||
|
* @param y number of bits to rotate % wordSize
|
||
|
*/
|
||
|
private int RotateLeft(int x, int y)
|
||
|
{
|
||
|
return ((int)((uint)(x << (y & (wordSize-1)))
|
||
|
| ((uint) x >> (wordSize - (y & (wordSize-1))))));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Perform a right "spin" of the word. The rotation of the given
|
||
|
* word <em>x</em> is rotated left by <em>y</em> bits.
|
||
|
* Only the <em>lg(wordSize)</em> low-order bits of <em>y</em>
|
||
|
* are used to determine the rotation amount. Here it is
|
||
|
* assumed that the wordsize used is a power of 2.
|
||
|
*
|
||
|
* @param x word to rotate
|
||
|
* @param y number of bits to rotate % wordSize
|
||
|
*/
|
||
|
private int RotateRight(int x, int y)
|
||
|
{
|
||
|
return ((int)(((uint) x >> (y & (wordSize-1)))
|
||
|
| (uint)(x << (wordSize - (y & (wordSize-1))))));
|
||
|
}
|
||
|
|
||
|
private int BytesToWord(
|
||
|
byte[] src,
|
||
|
int srcOff)
|
||
|
{
|
||
|
int word = 0;
|
||
|
|
||
|
for (int i = bytesPerWord - 1; i >= 0; i--)
|
||
|
{
|
||
|
word = (word << 8) + (src[i + srcOff] & 0xff);
|
||
|
}
|
||
|
|
||
|
return word;
|
||
|
}
|
||
|
|
||
|
private void WordToBytes(
|
||
|
int word,
|
||
|
byte[] dst,
|
||
|
int dstOff)
|
||
|
{
|
||
|
for (int i = 0; i < bytesPerWord; i++)
|
||
|
{
|
||
|
dst[i + dstOff] = (byte)word;
|
||
|
word = (int) ((uint) word >> 8);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#pragma warning restore
|
||
|
#endif
|