#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR) #pragma warning disable using System; using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters; using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Utilities; using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities; namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Engines { /// SM4 Block Cipher - SM4 is a 128 bit block cipher with a 128 bit key. /// /// The implementation here is based on the document http://eprint.iacr.org/2008/329.pdf /// by Whitfield Diffie and George Ledin, which is a translation of Prof. LU Shu-wang's original standard. /// public class SM4Engine : IBlockCipher { private const int BlockSize = 16; private static readonly byte[] Sbox = { 0xd6, 0x90, 0xe9, 0xfe, 0xcc, 0xe1, 0x3d, 0xb7, 0x16, 0xb6, 0x14, 0xc2, 0x28, 0xfb, 0x2c, 0x05, 0x2b, 0x67, 0x9a, 0x76, 0x2a, 0xbe, 0x04, 0xc3, 0xaa, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99, 0x9c, 0x42, 0x50, 0xf4, 0x91, 0xef, 0x98, 0x7a, 0x33, 0x54, 0x0b, 0x43, 0xed, 0xcf, 0xac, 0x62, 0xe4, 0xb3, 0x1c, 0xa9, 0xc9, 0x08, 0xe8, 0x95, 0x80, 0xdf, 0x94, 0xfa, 0x75, 0x8f, 0x3f, 0xa6, 0x47, 0x07, 0xa7, 0xfc, 0xf3, 0x73, 0x17, 0xba, 0x83, 0x59, 0x3c, 0x19, 0xe6, 0x85, 0x4f, 0xa8, 0x68, 0x6b, 0x81, 0xb2, 0x71, 0x64, 0xda, 0x8b, 0xf8, 0xeb, 0x0f, 0x4b, 0x70, 0x56, 0x9d, 0x35, 0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, 0xd1, 0xa2, 0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, 0x87, 0xd4, 0x00, 0x46, 0x57, 0x9f, 0xd3, 0x27, 0x52, 0x4c, 0x36, 0x02, 0xe7, 0xa0, 0xc4, 0xc8, 0x9e, 0xea, 0xbf, 0x8a, 0xd2, 0x40, 0xc7, 0x38, 0xb5, 0xa3, 0xf7, 0xf2, 0xce, 0xf9, 0x61, 0x15, 0xa1, 0xe0, 0xae, 0x5d, 0xa4, 0x9b, 0x34, 0x1a, 0x55, 0xad, 0x93, 0x32, 0x30, 0xf5, 0x8c, 0xb1, 0xe3, 0x1d, 0xf6, 0xe2, 0x2e, 0x82, 0x66, 0xca, 0x60, 0xc0, 0x29, 0x23, 0xab, 0x0d, 0x53, 0x4e, 0x6f, 0xd5, 0xdb, 0x37, 0x45, 0xde, 0xfd, 0x8e, 0x2f, 0x03, 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b, 0x51, 0x8d, 0x1b, 0xaf, 0x92, 0xbb, 0xdd, 0xbc, 0x7f, 0x11, 0xd9, 0x5c, 0x41, 0x1f, 0x10, 0x5a, 0xd8, 0x0a, 0xc1, 0x31, 0x88, 0xa5, 0xcd, 0x7b, 0xbd, 0x2d, 0x74, 0xd0, 0x12, 0xb8, 0xe5, 0xb4, 0xb0, 0x89, 0x69, 0x97, 0x4a, 0x0c, 0x96, 0x77, 0x7e, 0x65, 0xb9, 0xf1, 0x09, 0xc5, 0x6e, 0xc6, 0x84, 0x18, 0xf0, 0x7d, 0xec, 0x3a, 0xdc, 0x4d, 0x20, 0x79, 0xee, 0x5f, 0x3e, 0xd7, 0xcb, 0x39, 0x48 }; private static readonly uint[] CK = { 0x00070e15, 0x1c232a31, 0x383f464d, 0x545b6269, 0x70777e85, 0x8c939aa1, 0xa8afb6bd, 0xc4cbd2d9, 0xe0e7eef5, 0xfc030a11, 0x181f262d, 0x343b4249, 0x50575e65, 0x6c737a81, 0x888f969d, 0xa4abb2b9, 0xc0c7ced5, 0xdce3eaf1, 0xf8ff060d, 0x141b2229, 0x30373e45, 0x4c535a61, 0x686f767d, 0x848b9299, 0xa0a7aeb5, 0xbcc3cad1, 0xd8dfe6ed, 0xf4fb0209, 0x10171e25, 0x2c333a41, 0x484f565d, 0x646b7279 }; private static readonly uint[] FK = { 0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc }; private uint[] rk; // non-linear substitution tau. private static uint tau(uint A) { uint b0 = Sbox[A >> 24]; uint b1 = Sbox[(A >> 16) & 0xFF]; uint b2 = Sbox[(A >> 8) & 0xFF]; uint b3 = Sbox[A & 0xFF]; return (b0 << 24) | (b1 << 16) | (b2 << 8) | b3; } private static uint L_ap(uint B) { return B ^ Integers.RotateLeft(B, 13) ^ Integers.RotateLeft(B, 23); } private uint T_ap(uint Z) { return L_ap(tau(Z)); } // Key expansion private void ExpandKey(bool forEncryption, byte[] key) { uint K0 = Pack.BE_To_UInt32(key, 0) ^ FK[0]; uint K1 = Pack.BE_To_UInt32(key, 4) ^ FK[1]; uint K2 = Pack.BE_To_UInt32(key, 8) ^ FK[2]; uint K3 = Pack.BE_To_UInt32(key, 12) ^ FK[3]; if (forEncryption) { rk[0] = K0 ^ T_ap(K1 ^ K2 ^ K3 ^ CK[0]); rk[1] = K1 ^ T_ap(K2 ^ K3 ^ rk[0] ^ CK[1]); rk[2] = K2 ^ T_ap(K3 ^ rk[0] ^ rk[1] ^ CK[2]); rk[3] = K3 ^ T_ap(rk[0] ^ rk[1] ^ rk[2] ^ CK[3]); for (int i = 4; i < 32; ++i) { rk[i] = rk[i - 4] ^ T_ap(rk[i - 3] ^ rk[i - 2] ^ rk[i - 1] ^ CK[i]); } } else { rk[31] = K0 ^ T_ap(K1 ^ K2 ^ K3 ^ CK[0]); rk[30] = K1 ^ T_ap(K2 ^ K3 ^ rk[31] ^ CK[1]); rk[29] = K2 ^ T_ap(K3 ^ rk[31] ^ rk[30] ^ CK[2]); rk[28] = K3 ^ T_ap(rk[31] ^ rk[30] ^ rk[29] ^ CK[3]); for (int i = 27; i >= 0; --i) { rk[i] = rk[i + 4] ^ T_ap(rk[i + 3] ^ rk[i + 2] ^ rk[i + 1] ^ CK[31 - i]); } } } // Linear substitution L private static uint L(uint B) { return B ^ Integers.RotateLeft(B, 2) ^ Integers.RotateLeft(B, 10) ^ Integers.RotateLeft(B, 18) ^ Integers.RotateLeft(B, 24); } // Mixer-substitution T private static uint T(uint Z) { return L(tau(Z)); } public virtual void Init(bool forEncryption, ICipherParameters parameters) { KeyParameter keyParameter = parameters as KeyParameter; if (null == keyParameter) throw new ArgumentException("invalid parameter passed to SM4 init - " + BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities.Platform.GetTypeName(parameters), "parameters"); byte[] key = keyParameter.GetKey(); if (key.Length != 16) throw new ArgumentException("SM4 requires a 128 bit key", "parameters"); if (null == rk) { rk = new uint[32]; } ExpandKey(forEncryption, key); } public virtual string AlgorithmName { get { return "SM4"; } } public virtual bool IsPartialBlockOkay { get { return false; } } public virtual int GetBlockSize() { return BlockSize; } public virtual int ProcessBlock(byte[] input, int inOff, byte[] output, int outOff) { if (null == rk) throw new InvalidOperationException("SM4 not initialised"); Check.DataLength(input, inOff, BlockSize, "input buffer too short"); Check.OutputLength(output, outOff, BlockSize, "output buffer too short"); uint X0 = Pack.BE_To_UInt32(input, inOff); uint X1 = Pack.BE_To_UInt32(input, inOff + 4); uint X2 = Pack.BE_To_UInt32(input, inOff + 8); uint X3 = Pack.BE_To_UInt32(input, inOff + 12); for (int i = 0; i < 32; i += 4) { X0 ^= T(X1 ^ X2 ^ X3 ^ rk[i ]); // F0 X1 ^= T(X2 ^ X3 ^ X0 ^ rk[i + 1]); // F1 X2 ^= T(X3 ^ X0 ^ X1 ^ rk[i + 2]); // F2 X3 ^= T(X0 ^ X1 ^ X2 ^ rk[i + 3]); // F3 } Pack.UInt32_To_BE(X3, output, outOff); Pack.UInt32_To_BE(X2, output, outOff + 4); Pack.UInt32_To_BE(X1, output, outOff + 8); Pack.UInt32_To_BE(X0, output, outOff + 12); return BlockSize; } public virtual void Reset() { } } } #pragma warning restore #endif