#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR) #pragma warning disable using System; using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Modes; using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Paddings; using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters; namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Macs { /** * CMAC - as specified at www.nuee.nagoya-u.ac.jp/labs/tiwata/omac/omac.html *

* CMAC is analogous to OMAC1 - see also en.wikipedia.org/wiki/CMAC *

* CMAC is a NIST recomendation - see * csrc.nist.gov/CryptoToolkit/modes/800-38_Series_Publications/SP800-38B.pdf *

* CMAC/OMAC1 is a blockcipher-based message authentication code designed and * analyzed by Tetsu Iwata and Kaoru Kurosawa. *

* CMAC/OMAC1 is a simple variant of the CBC MAC (Cipher Block Chaining Message * Authentication Code). OMAC stands for One-Key CBC MAC. *

* It supports 128- or 64-bits block ciphers, with any key size, and returns * a MAC with dimension less or equal to the block size of the underlying * cipher. *

*/ public class CMac : IMac { private const byte CONSTANT_128 = (byte)0x87; private const byte CONSTANT_64 = (byte)0x1b; private byte[] ZEROES; private byte[] mac; private byte[] buf; private int bufOff; private IBlockCipher cipher; private int macSize; private byte[] L, Lu, Lu2; /** * create a standard MAC based on a CBC block cipher (64 or 128 bit block). * This will produce an authentication code the length of the block size * of the cipher. * * @param cipher the cipher to be used as the basis of the MAC generation. */ public CMac( IBlockCipher cipher) : this(cipher, cipher.GetBlockSize() * 8) { } /** * create a standard MAC based on a block cipher with the size of the * MAC been given in bits. *

* Note: the size of the MAC must be at least 24 bits (FIPS Publication 81), * or 16 bits if being used as a data authenticator (FIPS Publication 113), * and in general should be less than the size of the block cipher as it reduces * the chance of an exhaustive attack (see Handbook of Applied Cryptography). * * @param cipher the cipher to be used as the basis of the MAC generation. * @param macSizeInBits the size of the MAC in bits, must be a multiple of 8 and @lt;= 128. */ public CMac( IBlockCipher cipher, int macSizeInBits) { if ((macSizeInBits % 8) != 0) throw new ArgumentException("MAC size must be multiple of 8"); if (macSizeInBits > (cipher.GetBlockSize() * 8)) { throw new ArgumentException( "MAC size must be less or equal to " + (cipher.GetBlockSize() * 8)); } if (cipher.GetBlockSize() != 8 && cipher.GetBlockSize() != 16) { throw new ArgumentException( "Block size must be either 64 or 128 bits"); } this.cipher = new CbcBlockCipher(cipher); this.macSize = macSizeInBits / 8; mac = new byte[cipher.GetBlockSize()]; buf = new byte[cipher.GetBlockSize()]; ZEROES = new byte[cipher.GetBlockSize()]; bufOff = 0; } public string AlgorithmName { get { return cipher.AlgorithmName; } } private static int ShiftLeft(byte[] block, byte[] output) { int i = block.Length; uint bit = 0; while (--i >= 0) { uint b = block[i]; output[i] = (byte)((b << 1) | bit); bit = (b >> 7) & 1; } return (int)bit; } private static byte[] DoubleLu(byte[] input) { byte[] ret = new byte[input.Length]; int carry = ShiftLeft(input, ret); int xor = input.Length == 16 ? CONSTANT_128 : CONSTANT_64; /* * NOTE: This construction is an attempt at a constant-time implementation. */ ret[input.Length - 1] ^= (byte)(xor >> ((1 - carry) << 3)); return ret; } public void Init( ICipherParameters parameters) { if (parameters is KeyParameter) { cipher.Init(true, parameters); //initializes the L, Lu, Lu2 numbers L = new byte[ZEROES.Length]; cipher.ProcessBlock(ZEROES, 0, L, 0); Lu = DoubleLu(L); Lu2 = DoubleLu(Lu); } else if (parameters != null) { // CMAC mode does not permit IV to underlying CBC mode throw new ArgumentException("CMac mode only permits key to be set.", "parameters"); } Reset(); } public int GetMacSize() { return macSize; } public void Update( byte input) { if (bufOff == buf.Length) { cipher.ProcessBlock(buf, 0, mac, 0); bufOff = 0; } buf[bufOff++] = input; } public void BlockUpdate( byte[] inBytes, int inOff, int len) { if (len < 0) throw new ArgumentException("Can't have a negative input length!"); int blockSize = cipher.GetBlockSize(); int gapLen = blockSize - bufOff; if (len > gapLen) { Array.Copy(inBytes, inOff, buf, bufOff, gapLen); cipher.ProcessBlock(buf, 0, mac, 0); bufOff = 0; len -= gapLen; inOff += gapLen; while (len > blockSize) { cipher.ProcessBlock(inBytes, inOff, mac, 0); len -= blockSize; inOff += blockSize; } } Array.Copy(inBytes, inOff, buf, bufOff, len); bufOff += len; } public int DoFinal( byte[] outBytes, int outOff) { int blockSize = cipher.GetBlockSize(); byte[] lu; if (bufOff == blockSize) { lu = Lu; } else { new ISO7816d4Padding().AddPadding(buf, bufOff); lu = Lu2; } for (int i = 0; i < mac.Length; i++) { buf[i] ^= lu[i]; } cipher.ProcessBlock(buf, 0, mac, 0); Array.Copy(mac, 0, outBytes, outOff, macSize); Reset(); return macSize; } /** * Reset the mac generator. */ public void Reset() { /* * clean the buffer. */ Array.Clear(buf, 0, buf.Length); bufOff = 0; /* * Reset the underlying cipher. */ cipher.Reset(); } } } #pragma warning restore #endif