#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR) #pragma warning disable using System; using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Generators; using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters; using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Utilities; namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Macs { /// /// Poly1305 message authentication code, designed by D. J. Bernstein. /// /// /// Poly1305 computes a 128-bit (16 bytes) authenticator, using a 128 bit nonce and a 256 bit key /// consisting of a 128 bit key applied to an underlying cipher, and a 128 bit key (with 106 /// effective key bits) used in the authenticator. /// /// The polynomial calculation in this implementation is adapted from the public domain poly1305-donna-unrolled C implementation /// by Andrew M (@floodyberry). /// /// [BestHTTP.PlatformSupport.IL2CPP.Il2CppEagerStaticClassConstructionAttribute] public sealed class Poly1305 : IMac { private const int BlockSize = 16; private readonly IBlockCipher cipher; private readonly byte[] singleByte = new byte[1]; // Initialised state /** Polynomial key */ private uint r0, r1, r2, r3, r4; /** Precomputed 5 * r[1..4] */ private uint s1, s2, s3, s4; /** Encrypted nonce */ private uint k0, k1, k2, k3; // Accumulating state /** Current block of buffered input */ private byte[] currentBlock = new byte[BlockSize]; /** Current offset in input buffer */ private int currentBlockOffset = 0; /** Polynomial accumulator */ private uint h0, h1, h2, h3, h4; /** * Constructs a Poly1305 MAC, where the key passed to init() will be used directly. */ public Poly1305() { this.cipher = null; } /** * Constructs a Poly1305 MAC, using a 128 bit block cipher. */ public Poly1305(IBlockCipher cipher) { if (cipher.GetBlockSize() != BlockSize) { throw new ArgumentException("Poly1305 requires a 128 bit block cipher."); } this.cipher = cipher; } /// /// Initialises the Poly1305 MAC. /// /// a {@link ParametersWithIV} containing a 128 bit nonce and a {@link KeyParameter} with /// a 256 bit key complying to the {@link Poly1305KeyGenerator Poly1305 key format}. public void Init(ICipherParameters parameters) { byte[] nonce = null; if (cipher != null) { if (!(parameters is ParametersWithIV)) throw new ArgumentException("Poly1305 requires an IV when used with a block cipher.", "parameters"); ParametersWithIV ivParams = (ParametersWithIV)parameters; nonce = ivParams.GetIV(); parameters = ivParams.Parameters; } if (!(parameters is KeyParameter)) throw new ArgumentException("Poly1305 requires a key."); KeyParameter keyParams = (KeyParameter)parameters; SetKey(keyParams.GetKey(), nonce); Reset(); } private void SetKey(byte[] key, byte[] nonce) { if (key.Length != 32) throw new ArgumentException("Poly1305 key must be 256 bits."); if (cipher != null && (nonce == null || nonce.Length != BlockSize)) throw new ArgumentException("Poly1305 requires a 128 bit IV."); // Extract r portion of key (and "clamp" the values) uint t0 = Pack.LE_To_UInt32(key, 0); uint t1 = Pack.LE_To_UInt32(key, 4); uint t2 = Pack.LE_To_UInt32(key, 8); uint t3 = Pack.LE_To_UInt32(key, 12); // NOTE: The masks perform the key "clamping" implicitly r0 = t0 & 0x03FFFFFFU; r1 = ((t0 >> 26) | (t1 << 6)) & 0x03FFFF03U; r2 = ((t1 >> 20) | (t2 << 12)) & 0x03FFC0FFU; r3 = ((t2 >> 14) | (t3 << 18)) & 0x03F03FFFU; r4 = (t3 >> 8) & 0x000FFFFFU; // Precompute multipliers s1 = r1 * 5; s2 = r2 * 5; s3 = r3 * 5; s4 = r4 * 5; byte[] kBytes; int kOff; if (cipher == null) { kBytes = key; kOff = BlockSize; } else { // Compute encrypted nonce kBytes = new byte[BlockSize]; kOff = 0; cipher.Init(true, new KeyParameter(key, BlockSize, BlockSize)); cipher.ProcessBlock(nonce, 0, kBytes, 0); } k0 = Pack.LE_To_UInt32(kBytes, kOff + 0); k1 = Pack.LE_To_UInt32(kBytes, kOff + 4); k2 = Pack.LE_To_UInt32(kBytes, kOff + 8); k3 = Pack.LE_To_UInt32(kBytes, kOff + 12); } public string AlgorithmName { get { return cipher == null ? "Poly1305" : "Poly1305-" + cipher.AlgorithmName; } } public int GetMacSize() { return BlockSize; } public void Update(byte input) { singleByte[0] = input; BlockUpdate(singleByte, 0, 1); } public void BlockUpdate(byte[] input, int inOff, int len) { int copied = 0; while (len > copied) { if (currentBlockOffset == BlockSize) { ProcessBlock(); currentBlockOffset = 0; } int toCopy = System.Math.Min((len - copied), BlockSize - currentBlockOffset); Array.Copy(input, copied + inOff, currentBlock, currentBlockOffset, toCopy); copied += toCopy; currentBlockOffset += toCopy; } } private void ProcessBlock() { if (currentBlockOffset < BlockSize) { currentBlock[currentBlockOffset] = 1; for (int i = currentBlockOffset + 1; i < BlockSize; i++) { currentBlock[i] = 0; } } ulong t0 = Pack.LE_To_UInt32(currentBlock, 0); ulong t1 = Pack.LE_To_UInt32(currentBlock, 4); ulong t2 = Pack.LE_To_UInt32(currentBlock, 8); ulong t3 = Pack.LE_To_UInt32(currentBlock, 12); h0 += (uint)(t0 & 0x3ffffffU); h1 += (uint)((((t1 << 32) | t0) >> 26) & 0x3ffffff); h2 += (uint)((((t2 << 32) | t1) >> 20) & 0x3ffffff); h3 += (uint)((((t3 << 32) | t2) >> 14) & 0x3ffffff); h4 += (uint)(t3 >> 8); if (currentBlockOffset == BlockSize) { h4 += (1 << 24); } ulong tp0 = mul32x32_64(h0,r0) + mul32x32_64(h1,s4) + mul32x32_64(h2,s3) + mul32x32_64(h3,s2) + mul32x32_64(h4,s1); ulong tp1 = mul32x32_64(h0,r1) + mul32x32_64(h1,r0) + mul32x32_64(h2,s4) + mul32x32_64(h3,s3) + mul32x32_64(h4,s2); ulong tp2 = mul32x32_64(h0,r2) + mul32x32_64(h1,r1) + mul32x32_64(h2,r0) + mul32x32_64(h3,s4) + mul32x32_64(h4,s3); ulong tp3 = mul32x32_64(h0,r3) + mul32x32_64(h1,r2) + mul32x32_64(h2,r1) + mul32x32_64(h3,r0) + mul32x32_64(h4,s4); ulong tp4 = mul32x32_64(h0,r4) + mul32x32_64(h1,r3) + mul32x32_64(h2,r2) + mul32x32_64(h3,r1) + mul32x32_64(h4,r0); h0 = (uint)tp0 & 0x3ffffff; tp1 += (tp0 >> 26); h1 = (uint)tp1 & 0x3ffffff; tp2 += (tp1 >> 26); h2 = (uint)tp2 & 0x3ffffff; tp3 += (tp2 >> 26); h3 = (uint)tp3 & 0x3ffffff; tp4 += (tp3 >> 26); h4 = (uint)tp4 & 0x3ffffff; h0 += (uint)(tp4 >> 26) * 5; h1 += (h0 >> 26); h0 &= 0x3ffffff; } public int DoFinal(byte[] output, int outOff) { Check.DataLength(output, outOff, BlockSize, "Output buffer is too short."); if (currentBlockOffset > 0) { // Process padded block ProcessBlock(); } h1 += (h0 >> 26); h0 &= 0x3ffffff; h2 += (h1 >> 26); h1 &= 0x3ffffff; h3 += (h2 >> 26); h2 &= 0x3ffffff; h4 += (h3 >> 26); h3 &= 0x3ffffff; h0 += (h4 >> 26) * 5; h4 &= 0x3ffffff; h1 += (h0 >> 26); h0 &= 0x3ffffff; uint g0, g1, g2, g3, g4, b; g0 = h0 + 5; b = g0 >> 26; g0 &= 0x3ffffff; g1 = h1 + b; b = g1 >> 26; g1 &= 0x3ffffff; g2 = h2 + b; b = g2 >> 26; g2 &= 0x3ffffff; g3 = h3 + b; b = g3 >> 26; g3 &= 0x3ffffff; g4 = h4 + b - (1 << 26); b = (g4 >> 31) - 1; uint nb = ~b; h0 = (h0 & nb) | (g0 & b); h1 = (h1 & nb) | (g1 & b); h2 = (h2 & nb) | (g2 & b); h3 = (h3 & nb) | (g3 & b); h4 = (h4 & nb) | (g4 & b); ulong f0, f1, f2, f3; f0 = ((h0 ) | (h1 << 26)) + (ulong)k0; f1 = ((h1 >> 6 ) | (h2 << 20)) + (ulong)k1; f2 = ((h2 >> 12) | (h3 << 14)) + (ulong)k2; f3 = ((h3 >> 18) | (h4 << 8 )) + (ulong)k3; Pack.UInt32_To_LE((uint)f0, output, outOff); f1 += (f0 >> 32); Pack.UInt32_To_LE((uint)f1, output, outOff + 4); f2 += (f1 >> 32); Pack.UInt32_To_LE((uint)f2, output, outOff + 8); f3 += (f2 >> 32); Pack.UInt32_To_LE((uint)f3, output, outOff + 12); Reset(); return BlockSize; } public void Reset() { currentBlockOffset = 0; h0 = h1 = h2 = h3 = h4 = 0; } private static ulong mul32x32_64(uint i1, uint i2) { return ((ulong)i1) * i2; } } } #pragma warning restore #endif