#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR) #pragma warning disable using System; using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Macs; using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters; using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities; namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Modes { /** * A Two-Pass Authenticated-Encryption Scheme Optimized for Simplicity and * Efficiency - by M. Bellare, P. Rogaway, D. Wagner. * * http://www.cs.ucdavis.edu/~rogaway/papers/eax.pdf * * EAX is an AEAD scheme based on CTR and OMAC1/CMAC, that uses a single block * cipher to encrypt and authenticate data. It's on-line (the length of a * message isn't needed to begin processing it), has good performances, it's * simple and provably secure (provided the underlying block cipher is secure). * * Of course, this implementations is NOT thread-safe. */ public class EaxBlockCipher : IAeadBlockCipher { private enum Tag : byte { N, H, C }; private SicBlockCipher cipher; private bool forEncryption; private int blockSize; private IMac mac; private byte[] nonceMac; private byte[] associatedTextMac; private byte[] macBlock; private int macSize; private byte[] bufBlock; private int bufOff; private bool cipherInitialized; private byte[] initialAssociatedText; /** * Constructor that accepts an instance of a block cipher engine. * * @param cipher the engine to use */ public EaxBlockCipher( IBlockCipher cipher) { blockSize = cipher.GetBlockSize(); mac = new CMac(cipher); macBlock = new byte[blockSize]; associatedTextMac = new byte[mac.GetMacSize()]; nonceMac = new byte[mac.GetMacSize()]; this.cipher = new SicBlockCipher(cipher); } public virtual string AlgorithmName { get { return cipher.GetUnderlyingCipher().AlgorithmName + "/EAX"; } } public virtual IBlockCipher GetUnderlyingCipher() { return cipher; } public virtual int GetBlockSize() { return cipher.GetBlockSize(); } public virtual void Init( bool forEncryption, ICipherParameters parameters) { this.forEncryption = forEncryption; byte[] nonce; ICipherParameters keyParam; if (parameters is AeadParameters) { AeadParameters param = (AeadParameters) parameters; nonce = param.GetNonce(); initialAssociatedText = param.GetAssociatedText(); macSize = param.MacSize / 8; keyParam = param.Key; } else if (parameters is ParametersWithIV) { ParametersWithIV param = (ParametersWithIV) parameters; nonce = param.GetIV(); initialAssociatedText = null; macSize = mac.GetMacSize() / 2; keyParam = param.Parameters; } else { throw new ArgumentException("invalid parameters passed to EAX"); } bufBlock = new byte[forEncryption ? blockSize : (blockSize + macSize)]; byte[] tag = new byte[blockSize]; // Key reuse implemented in CBC mode of underlying CMac mac.Init(keyParam); tag[blockSize - 1] = (byte)Tag.N; mac.BlockUpdate(tag, 0, blockSize); mac.BlockUpdate(nonce, 0, nonce.Length); mac.DoFinal(nonceMac, 0); // Same BlockCipher underlies this and the mac, so reuse last key on cipher cipher.Init(true, new ParametersWithIV(null, nonceMac)); Reset(); } private void InitCipher() { if (cipherInitialized) { return; } cipherInitialized = true; mac.DoFinal(associatedTextMac, 0); byte[] tag = new byte[blockSize]; tag[blockSize - 1] = (byte)Tag.C; mac.BlockUpdate(tag, 0, blockSize); } private void CalculateMac() { byte[] outC = new byte[blockSize]; mac.DoFinal(outC, 0); for (int i = 0; i < macBlock.Length; i++) { macBlock[i] = (byte)(nonceMac[i] ^ associatedTextMac[i] ^ outC[i]); } } public virtual void Reset() { Reset(true); } private void Reset( bool clearMac) { cipher.Reset(); // TODO Redundant since the mac will reset it? mac.Reset(); bufOff = 0; Array.Clear(bufBlock, 0, bufBlock.Length); if (clearMac) { Array.Clear(macBlock, 0, macBlock.Length); } byte[] tag = new byte[blockSize]; tag[blockSize - 1] = (byte)Tag.H; mac.BlockUpdate(tag, 0, blockSize); cipherInitialized = false; if (initialAssociatedText != null) { ProcessAadBytes(initialAssociatedText, 0, initialAssociatedText.Length); } } public virtual void ProcessAadByte(byte input) { if (cipherInitialized) { throw new InvalidOperationException("AAD data cannot be added after encryption/decryption processing has begun."); } mac.Update(input); } public virtual void ProcessAadBytes(byte[] inBytes, int inOff, int len) { if (cipherInitialized) { throw new InvalidOperationException("AAD data cannot be added after encryption/decryption processing has begun."); } mac.BlockUpdate(inBytes, inOff, len); } public virtual int ProcessByte( byte input, byte[] outBytes, int outOff) { InitCipher(); return Process(input, outBytes, outOff); } public virtual int ProcessBytes( byte[] inBytes, int inOff, int len, byte[] outBytes, int outOff) { InitCipher(); int resultLen = 0; for (int i = 0; i != len; i++) { resultLen += Process(inBytes[inOff + i], outBytes, outOff + resultLen); } return resultLen; } public virtual int DoFinal( byte[] outBytes, int outOff) { InitCipher(); int extra = bufOff; byte[] tmp = new byte[bufBlock.Length]; bufOff = 0; if (forEncryption) { Check.OutputLength(outBytes, outOff, extra + macSize, "Output buffer too short"); cipher.ProcessBlock(bufBlock, 0, tmp, 0); Array.Copy(tmp, 0, outBytes, outOff, extra); mac.BlockUpdate(tmp, 0, extra); CalculateMac(); Array.Copy(macBlock, 0, outBytes, outOff + extra, macSize); Reset(false); return extra + macSize; } else { if (extra < macSize) throw new InvalidCipherTextException("data too short"); Check.OutputLength(outBytes, outOff, extra - macSize, "Output buffer too short"); if (extra > macSize) { mac.BlockUpdate(bufBlock, 0, extra - macSize); cipher.ProcessBlock(bufBlock, 0, tmp, 0); Array.Copy(tmp, 0, outBytes, outOff, extra - macSize); } CalculateMac(); if (!VerifyMac(bufBlock, extra - macSize)) throw new InvalidCipherTextException("mac check in EAX failed"); Reset(false); return extra - macSize; } } public virtual byte[] GetMac() { byte[] mac = new byte[macSize]; Array.Copy(macBlock, 0, mac, 0, macSize); return mac; } public virtual int GetUpdateOutputSize( int len) { int totalData = len + bufOff; if (!forEncryption) { if (totalData < macSize) { return 0; } totalData -= macSize; } return totalData - totalData % blockSize; } public virtual int GetOutputSize( int len) { int totalData = len + bufOff; if (forEncryption) { return totalData + macSize; } return totalData < macSize ? 0 : totalData - macSize; } private int Process( byte b, byte[] outBytes, int outOff) { bufBlock[bufOff++] = b; if (bufOff == bufBlock.Length) { Check.OutputLength(outBytes, outOff, blockSize, "Output buffer is too short"); // TODO Could move the ProcessByte(s) calls to here // InitCipher(); int size; if (forEncryption) { size = cipher.ProcessBlock(bufBlock, 0, outBytes, outOff); mac.BlockUpdate(outBytes, outOff, blockSize); } else { mac.BlockUpdate(bufBlock, 0, blockSize); size = cipher.ProcessBlock(bufBlock, 0, outBytes, outOff); } bufOff = 0; if (!forEncryption) { Array.Copy(bufBlock, blockSize, bufBlock, 0, macSize); bufOff = macSize; } return size; } return 0; } private bool VerifyMac(byte[] mac, int off) { int nonEqual = 0; for (int i = 0; i < macSize; i++) { nonEqual |= (macBlock[i] ^ mac[off + i]); } return nonEqual == 0; } } } #pragma warning restore #endif