You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
473 lines
16 KiB
473 lines
16 KiB
// CRC32.cs |
|
// ------------------------------------------------------------------ |
|
// |
|
// Copyright (c) 2011 Dino Chiesa. |
|
// All rights reserved. |
|
// |
|
// This code module is part of DotNetZip, a zipfile class library. |
|
// |
|
// ------------------------------------------------------------------ |
|
// |
|
// This code is licensed under the Microsoft Public License. |
|
// See the file License.txt for the license details. |
|
// More info on: http://dotnetzip.codeplex.com |
|
// |
|
// ------------------------------------------------------------------ |
|
// |
|
// Last Saved: <2011-August-02 18:25:54> |
|
// |
|
// ------------------------------------------------------------------ |
|
// |
|
// This module defines the CRC32 class, which can do the CRC32 algorithm, using |
|
// arbitrary starting polynomials, and bit reversal. The bit reversal is what |
|
// distinguishes this CRC-32 used in BZip2 from the CRC-32 that is used in PKZIP |
|
// files, or GZIP files. This class does both. |
|
// |
|
// ------------------------------------------------------------------ |
|
|
|
|
|
using System; |
|
using Interop = System.Runtime.InteropServices; |
|
|
|
namespace BestHTTP.Decompression.Crc |
|
{ |
|
/// <summary> |
|
/// Computes a CRC-32. The CRC-32 algorithm is parameterized - you |
|
/// can set the polynomial and enable or disable bit |
|
/// reversal. This can be used for GZIP, BZip2, or ZIP. |
|
/// </summary> |
|
/// <remarks> |
|
/// This type is used internally by DotNetZip; it is generally not used |
|
/// directly by applications wishing to create, read, or manipulate zip |
|
/// archive files. |
|
/// </remarks> |
|
|
|
internal class CRC32 |
|
{ |
|
/// <summary> |
|
/// Indicates the total number of bytes applied to the CRC. |
|
/// </summary> |
|
public Int64 TotalBytesRead |
|
{ |
|
get |
|
{ |
|
return _TotalBytesRead; |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Indicates the current CRC for all blocks slurped in. |
|
/// </summary> |
|
public Int32 Crc32Result |
|
{ |
|
get |
|
{ |
|
return unchecked((Int32)(~_register)); |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Returns the CRC32 for the specified stream. |
|
/// </summary> |
|
/// <param name="input">The stream over which to calculate the CRC32</param> |
|
/// <returns>the CRC32 calculation</returns> |
|
public Int32 GetCrc32(System.IO.Stream input) |
|
{ |
|
return GetCrc32AndCopy(input, null); |
|
} |
|
|
|
/// <summary> |
|
/// Returns the CRC32 for the specified stream, and writes the input into the |
|
/// output stream. |
|
/// </summary> |
|
/// <param name="input">The stream over which to calculate the CRC32</param> |
|
/// <param name="output">The stream into which to deflate the input</param> |
|
/// <returns>the CRC32 calculation</returns> |
|
public Int32 GetCrc32AndCopy(System.IO.Stream input, System.IO.Stream output) |
|
{ |
|
if (input == null) |
|
throw new Exception("The input stream must not be null."); |
|
|
|
unchecked |
|
{ |
|
byte[] buffer = new byte[BUFFER_SIZE]; |
|
int readSize = BUFFER_SIZE; |
|
|
|
_TotalBytesRead = 0; |
|
int count = input.Read(buffer, 0, readSize); |
|
if (output != null) output.Write(buffer, 0, count); |
|
_TotalBytesRead += count; |
|
while (count > 0) |
|
{ |
|
SlurpBlock(buffer, 0, count); |
|
count = input.Read(buffer, 0, readSize); |
|
if (output != null) output.Write(buffer, 0, count); |
|
_TotalBytesRead += count; |
|
} |
|
|
|
return (Int32)(~_register); |
|
} |
|
} |
|
|
|
|
|
/// <summary> |
|
/// Get the CRC32 for the given (word,byte) combo. This is a |
|
/// computation defined by PKzip for PKZIP 2.0 (weak) encryption. |
|
/// </summary> |
|
/// <param name="W">The word to start with.</param> |
|
/// <param name="B">The byte to combine it with.</param> |
|
/// <returns>The CRC-ized result.</returns> |
|
public Int32 ComputeCrc32(Int32 W, byte B) |
|
{ |
|
return _InternalComputeCrc32((UInt32)W, B); |
|
} |
|
|
|
internal Int32 _InternalComputeCrc32(UInt32 W, byte B) |
|
{ |
|
return (Int32)(crc32Table[(W ^ B) & 0xFF] ^ (W >> 8)); |
|
} |
|
|
|
|
|
/// <summary> |
|
/// Update the value for the running CRC32 using the given block of bytes. |
|
/// This is useful when using the CRC32() class in a Stream. |
|
/// </summary> |
|
/// <param name="block">block of bytes to slurp</param> |
|
/// <param name="offset">starting point in the block</param> |
|
/// <param name="count">how many bytes within the block to slurp</param> |
|
public void SlurpBlock(byte[] block, int offset, int count) |
|
{ |
|
if (block == null) |
|
throw new Exception("The data buffer must not be null."); |
|
|
|
// bzip algorithm |
|
for (int i = 0; i < count; i++) |
|
{ |
|
int x = offset + i; |
|
byte b = block[x]; |
|
if (this.reverseBits) |
|
{ |
|
UInt32 temp = (_register >> 24) ^ b; |
|
_register = (_register << 8) ^ crc32Table[temp]; |
|
} |
|
else |
|
{ |
|
UInt32 temp = (_register & 0x000000FF) ^ b; |
|
_register = (_register >> 8) ^ crc32Table[temp]; |
|
} |
|
} |
|
_TotalBytesRead += count; |
|
} |
|
|
|
|
|
/// <summary> |
|
/// Process one byte in the CRC. |
|
/// </summary> |
|
/// <param name = "b">the byte to include into the CRC . </param> |
|
public void UpdateCRC(byte b) |
|
{ |
|
if (this.reverseBits) |
|
{ |
|
UInt32 temp = (_register >> 24) ^ b; |
|
_register = (_register << 8) ^ crc32Table[temp]; |
|
} |
|
else |
|
{ |
|
UInt32 temp = (_register & 0x000000FF) ^ b; |
|
_register = (_register >> 8) ^ crc32Table[temp]; |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Process a run of N identical bytes into the CRC. |
|
/// </summary> |
|
/// <remarks> |
|
/// <para> |
|
/// This method serves as an optimization for updating the CRC when a |
|
/// run of identical bytes is found. Rather than passing in a buffer of |
|
/// length n, containing all identical bytes b, this method accepts the |
|
/// byte value and the length of the (virtual) buffer - the length of |
|
/// the run. |
|
/// </para> |
|
/// </remarks> |
|
/// <param name = "b">the byte to include into the CRC. </param> |
|
/// <param name = "n">the number of times that byte should be repeated. </param> |
|
public void UpdateCRC(byte b, int n) |
|
{ |
|
while (n-- > 0) |
|
{ |
|
if (this.reverseBits) |
|
{ |
|
uint temp = (_register >> 24) ^ b; |
|
_register = (_register << 8) ^ crc32Table[(temp >= 0) |
|
? temp |
|
: (temp + 256)]; |
|
} |
|
else |
|
{ |
|
UInt32 temp = (_register & 0x000000FF) ^ b; |
|
_register = (_register >> 8) ^ crc32Table[(temp >= 0) |
|
? temp |
|
: (temp + 256)]; |
|
|
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
private static uint ReverseBits(uint data) |
|
{ |
|
unchecked |
|
{ |
|
uint ret = data; |
|
ret = (ret & 0x55555555) << 1 | (ret >> 1) & 0x55555555; |
|
ret = (ret & 0x33333333) << 2 | (ret >> 2) & 0x33333333; |
|
ret = (ret & 0x0F0F0F0F) << 4 | (ret >> 4) & 0x0F0F0F0F; |
|
ret = (ret << 24) | ((ret & 0xFF00) << 8) | ((ret >> 8) & 0xFF00) | (ret >> 24); |
|
return ret; |
|
} |
|
} |
|
|
|
private static byte ReverseBits(byte data) |
|
{ |
|
unchecked |
|
{ |
|
uint u = (uint)data * 0x00020202; |
|
uint m = 0x01044010; |
|
uint s = u & m; |
|
uint t = (u << 2) & (m << 1); |
|
return (byte)((0x01001001 * (s + t)) >> 24); |
|
} |
|
} |
|
|
|
|
|
|
|
private void GenerateLookupTable() |
|
{ |
|
crc32Table = new UInt32[256]; |
|
unchecked |
|
{ |
|
UInt32 dwCrc; |
|
byte i = 0; |
|
do |
|
{ |
|
dwCrc = i; |
|
for (byte j = 8; j > 0; j--) |
|
{ |
|
if ((dwCrc & 1) == 1) |
|
{ |
|
dwCrc = (dwCrc >> 1) ^ dwPolynomial; |
|
} |
|
else |
|
{ |
|
dwCrc >>= 1; |
|
} |
|
} |
|
if (reverseBits) |
|
{ |
|
crc32Table[ReverseBits(i)] = ReverseBits(dwCrc); |
|
} |
|
else |
|
{ |
|
crc32Table[i] = dwCrc; |
|
} |
|
i++; |
|
} while (i!=0); |
|
} |
|
|
|
#if VERBOSE |
|
Console.WriteLine(); |
|
Console.WriteLine("private static readonly UInt32[] crc32Table = {"); |
|
for (int i = 0; i < crc32Table.Length; i+=4) |
|
{ |
|
Console.Write(" "); |
|
for (int j=0; j < 4; j++) |
|
{ |
|
Console.Write(" 0x{0:X8}U,", crc32Table[i+j]); |
|
} |
|
Console.WriteLine(); |
|
} |
|
Console.WriteLine("};"); |
|
Console.WriteLine(); |
|
#endif |
|
} |
|
|
|
|
|
private uint gf2_matrix_times(uint[] matrix, uint vec) |
|
{ |
|
uint sum = 0; |
|
int i=0; |
|
while (vec != 0) |
|
{ |
|
if ((vec & 0x01)== 0x01) |
|
sum ^= matrix[i]; |
|
vec >>= 1; |
|
i++; |
|
} |
|
return sum; |
|
} |
|
|
|
private void gf2_matrix_square(uint[] square, uint[] mat) |
|
{ |
|
for (int i = 0; i < 32; i++) |
|
square[i] = gf2_matrix_times(mat, mat[i]); |
|
} |
|
|
|
|
|
|
|
/// <summary> |
|
/// Combines the given CRC32 value with the current running total. |
|
/// </summary> |
|
/// <remarks> |
|
/// This is useful when using a divide-and-conquer approach to |
|
/// calculating a CRC. Multiple threads can each calculate a |
|
/// CRC32 on a segment of the data, and then combine the |
|
/// individual CRC32 values at the end. |
|
/// </remarks> |
|
/// <param name="crc">the crc value to be combined with this one</param> |
|
/// <param name="length">the length of data the CRC value was calculated on</param> |
|
public void Combine(int crc, int length) |
|
{ |
|
uint[] even = new uint[32]; // even-power-of-two zeros operator |
|
uint[] odd = new uint[32]; // odd-power-of-two zeros operator |
|
|
|
if (length == 0) |
|
return; |
|
|
|
uint crc1= ~_register; |
|
uint crc2= (uint) crc; |
|
|
|
// put operator for one zero bit in odd |
|
odd[0] = this.dwPolynomial; // the CRC-32 polynomial |
|
uint row = 1; |
|
for (int i = 1; i < 32; i++) |
|
{ |
|
odd[i] = row; |
|
row <<= 1; |
|
} |
|
|
|
// put operator for two zero bits in even |
|
gf2_matrix_square(even, odd); |
|
|
|
// put operator for four zero bits in odd |
|
gf2_matrix_square(odd, even); |
|
|
|
uint len2 = (uint) length; |
|
|
|
// apply len2 zeros to crc1 (first square will put the operator for one |
|
// zero byte, eight zero bits, in even) |
|
do { |
|
// apply zeros operator for this bit of len2 |
|
gf2_matrix_square(even, odd); |
|
|
|
if ((len2 & 1)== 1) |
|
crc1 = gf2_matrix_times(even, crc1); |
|
len2 >>= 1; |
|
|
|
if (len2 == 0) |
|
break; |
|
|
|
// another iteration of the loop with odd and even swapped |
|
gf2_matrix_square(odd, even); |
|
if ((len2 & 1)==1) |
|
crc1 = gf2_matrix_times(odd, crc1); |
|
len2 >>= 1; |
|
|
|
|
|
} while (len2 != 0); |
|
|
|
crc1 ^= crc2; |
|
|
|
_register= ~crc1; |
|
|
|
//return (int) crc1; |
|
return; |
|
} |
|
|
|
|
|
/// <summary> |
|
/// Create an instance of the CRC32 class using the default settings: no |
|
/// bit reversal, and a polynomial of 0xEDB88320. |
|
/// </summary> |
|
public CRC32() : this(false) |
|
{ |
|
} |
|
|
|
/// <summary> |
|
/// Create an instance of the CRC32 class, specifying whether to reverse |
|
/// data bits or not. |
|
/// </summary> |
|
/// <param name='reverseBits'> |
|
/// specify true if the instance should reverse data bits. |
|
/// </param> |
|
/// <remarks> |
|
/// <para> |
|
/// In the CRC-32 used by BZip2, the bits are reversed. Therefore if you |
|
/// want a CRC32 with compatibility with BZip2, you should pass true |
|
/// here. In the CRC-32 used by GZIP and PKZIP, the bits are not |
|
/// reversed; Therefore if you want a CRC32 with compatibility with |
|
/// those, you should pass false. |
|
/// </para> |
|
/// </remarks> |
|
public CRC32(bool reverseBits) : |
|
this( unchecked((int)0xEDB88320), reverseBits) |
|
{ |
|
} |
|
|
|
|
|
/// <summary> |
|
/// Create an instance of the CRC32 class, specifying the polynomial and |
|
/// whether to reverse data bits or not. |
|
/// </summary> |
|
/// <param name='polynomial'> |
|
/// The polynomial to use for the CRC, expressed in the reversed (LSB) |
|
/// format: the highest ordered bit in the polynomial value is the |
|
/// coefficient of the 0th power; the second-highest order bit is the |
|
/// coefficient of the 1 power, and so on. Expressed this way, the |
|
/// polynomial for the CRC-32C used in IEEE 802.3, is 0xEDB88320. |
|
/// </param> |
|
/// <param name='reverseBits'> |
|
/// specify true if the instance should reverse data bits. |
|
/// </param> |
|
/// |
|
/// <remarks> |
|
/// <para> |
|
/// In the CRC-32 used by BZip2, the bits are reversed. Therefore if you |
|
/// want a CRC32 with compatibility with BZip2, you should pass true |
|
/// here for the <c>reverseBits</c> parameter. In the CRC-32 used by |
|
/// GZIP and PKZIP, the bits are not reversed; Therefore if you want a |
|
/// CRC32 with compatibility with those, you should pass false for the |
|
/// <c>reverseBits</c> parameter. |
|
/// </para> |
|
/// </remarks> |
|
public CRC32(int polynomial, bool reverseBits) |
|
{ |
|
this.reverseBits = reverseBits; |
|
this.dwPolynomial = (uint) polynomial; |
|
this.GenerateLookupTable(); |
|
} |
|
|
|
/// <summary> |
|
/// Reset the CRC-32 class - clear the CRC "remainder register." |
|
/// </summary> |
|
/// <remarks> |
|
/// <para> |
|
/// Use this when employing a single instance of this class to compute |
|
/// multiple, distinct CRCs on multiple, distinct data blocks. |
|
/// </para> |
|
/// </remarks> |
|
public void Reset() |
|
{ |
|
_register = 0xFFFFFFFFU; |
|
} |
|
|
|
// private member vars |
|
private UInt32 dwPolynomial; |
|
private Int64 _TotalBytesRead; |
|
private bool reverseBits; |
|
private UInt32[] crc32Table; |
|
private const int BUFFER_SIZE = 8192; |
|
private UInt32 _register = 0xFFFFFFFFU; |
|
} |
|
} |