You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1495 lines
41 KiB
1495 lines
41 KiB
#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR) |
|
#pragma warning disable |
|
using System; |
|
|
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters; |
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Utilities; |
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities; |
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities.Encoders; |
|
|
|
namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Engines |
|
{ |
|
/// <summary> |
|
/// Implementation of the Threefish tweakable large block cipher in 256, 512 and 1024 bit block |
|
/// sizes. |
|
/// </summary> |
|
/// <remarks> |
|
/// This is the 1.3 version of Threefish defined in the Skein hash function submission to the NIST |
|
/// SHA-3 competition in October 2010. |
|
/// <p/> |
|
/// Threefish was designed by Niels Ferguson - Stefan Lucks - Bruce Schneier - Doug Whiting - Mihir |
|
/// Bellare - Tadayoshi Kohno - Jon Callas - Jesse Walker. |
|
/// <p/> |
|
/// This implementation inlines all round functions, unrolls 8 rounds, and uses 1.2k of static tables |
|
/// to speed up key schedule injection. <br/> |
|
/// 2 x block size state is retained by each cipher instance. |
|
/// </remarks> |
|
public class ThreefishEngine |
|
: IBlockCipher |
|
{ |
|
/// <summary> |
|
/// 256 bit block size - Threefish-256 |
|
/// </summary> |
|
public const int BLOCKSIZE_256 = 256; |
|
/// <summary> |
|
/// 512 bit block size - Threefish-512 |
|
/// </summary> |
|
public const int BLOCKSIZE_512 = 512; |
|
/// <summary> |
|
/// 1024 bit block size - Threefish-1024 |
|
/// </summary> |
|
public const int BLOCKSIZE_1024 = 1024; |
|
|
|
/** |
|
* Size of the tweak in bytes (always 128 bit/16 bytes) |
|
*/ |
|
private const int TWEAK_SIZE_BYTES = 16; |
|
private const int TWEAK_SIZE_WORDS = TWEAK_SIZE_BYTES / 8; |
|
|
|
/** |
|
* Rounds in Threefish-256 |
|
*/ |
|
private const int ROUNDS_256 = 72; |
|
/** |
|
* Rounds in Threefish-512 |
|
*/ |
|
private const int ROUNDS_512 = 72; |
|
/** |
|
* Rounds in Threefish-1024 |
|
*/ |
|
private const int ROUNDS_1024 = 80; |
|
|
|
/** |
|
* Max rounds of any of the variants |
|
*/ |
|
private const int MAX_ROUNDS = ROUNDS_1024; |
|
|
|
/** |
|
* Key schedule parity constant |
|
*/ |
|
private const ulong C_240 = 0x1BD11BDAA9FC1A22L; |
|
|
|
/* Pre-calculated modulo arithmetic tables for key schedule lookups */ |
|
private static readonly int[] MOD9 = new int[MAX_ROUNDS]; |
|
private static readonly int[] MOD17 = new int[MOD9.Length]; |
|
private static readonly int[] MOD5 = new int[MOD9.Length]; |
|
private static readonly int[] MOD3 = new int[MOD9.Length]; |
|
|
|
static ThreefishEngine() |
|
{ |
|
for (int i = 0; i < MOD9.Length; i++) |
|
{ |
|
MOD17[i] = i % 17; |
|
MOD9[i] = i % 9; |
|
MOD5[i] = i % 5; |
|
MOD3[i] = i % 3; |
|
} |
|
} |
|
|
|
/** |
|
* Block size in bytes |
|
*/ |
|
private readonly int blocksizeBytes; |
|
|
|
/** |
|
* Block size in 64 bit words |
|
*/ |
|
private readonly int blocksizeWords; |
|
|
|
/** |
|
* Buffer for byte oriented processBytes to call internal word API |
|
*/ |
|
private readonly ulong[] currentBlock; |
|
|
|
/** |
|
* Tweak bytes (2 byte t1,t2, calculated t3 and repeat of t1,t2 for modulo free lookup |
|
*/ |
|
private readonly ulong[] t = new ulong[5]; |
|
|
|
/** |
|
* Key schedule words |
|
*/ |
|
private readonly ulong[] kw; |
|
|
|
/** |
|
* The internal cipher implementation (varies by blocksize) |
|
*/ |
|
private readonly ThreefishCipher cipher; |
|
|
|
private bool forEncryption; |
|
|
|
/// <summary> |
|
/// Constructs a new Threefish cipher, with a specified block size. |
|
/// </summary> |
|
/// <param name="blocksizeBits">the block size in bits, one of <see cref="BLOCKSIZE_256"/>, <see cref="BLOCKSIZE_512"/>, |
|
/// <see cref="BLOCKSIZE_1024"/> .</param> |
|
public ThreefishEngine(int blocksizeBits) |
|
{ |
|
this.blocksizeBytes = (blocksizeBits / 8); |
|
this.blocksizeWords = (this.blocksizeBytes / 8); |
|
this.currentBlock = new ulong[blocksizeWords]; |
|
|
|
/* |
|
* Provide room for original key words, extended key word and repeat of key words for modulo |
|
* free lookup of key schedule words. |
|
*/ |
|
this.kw = new ulong[2 * blocksizeWords + 1]; |
|
|
|
switch (blocksizeBits) |
|
{ |
|
case BLOCKSIZE_256: |
|
cipher = new Threefish256Cipher(kw, t); |
|
break; |
|
case BLOCKSIZE_512: |
|
cipher = new Threefish512Cipher(kw, t); |
|
break; |
|
case BLOCKSIZE_1024: |
|
cipher = new Threefish1024Cipher(kw, t); |
|
break; |
|
default: |
|
throw new ArgumentException( |
|
"Invalid blocksize - Threefish is defined with block size of 256, 512, or 1024 bits"); |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Initialise the engine. |
|
/// </summary> |
|
/// <param name="forEncryption">Initialise for encryption if true, for decryption if false.</param> |
|
/// <param name="parameters">an instance of <see cref="TweakableBlockCipherParameters"/> or <see cref="KeyParameter"/> (to |
|
/// use a 0 tweak)</param> |
|
public virtual void Init(bool forEncryption, ICipherParameters parameters) |
|
{ |
|
byte[] keyBytes; |
|
byte[] tweakBytes; |
|
|
|
if (parameters is TweakableBlockCipherParameters) |
|
{ |
|
TweakableBlockCipherParameters tParams = (TweakableBlockCipherParameters)parameters; |
|
keyBytes = tParams.Key.GetKey(); |
|
tweakBytes = tParams.Tweak; |
|
} |
|
else if (parameters is KeyParameter) |
|
{ |
|
keyBytes = ((KeyParameter)parameters).GetKey(); |
|
tweakBytes = null; |
|
} |
|
else |
|
{ |
|
throw new ArgumentException("Invalid parameter passed to Threefish init - " |
|
+ BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities.Platform.GetTypeName(parameters)); |
|
} |
|
|
|
ulong[] keyWords = null; |
|
ulong[] tweakWords = null; |
|
|
|
if (keyBytes != null) |
|
{ |
|
if (keyBytes.Length != this.blocksizeBytes) |
|
{ |
|
throw new ArgumentException("Threefish key must be same size as block (" + blocksizeBytes |
|
+ " bytes)"); |
|
} |
|
keyWords = new ulong[blocksizeWords]; |
|
for (int i = 0; i < keyWords.Length; i++) |
|
{ |
|
keyWords[i] = BytesToWord(keyBytes, i * 8); |
|
} |
|
} |
|
if (tweakBytes != null) |
|
{ |
|
if (tweakBytes.Length != TWEAK_SIZE_BYTES) |
|
{ |
|
throw new ArgumentException("Threefish tweak must be " + TWEAK_SIZE_BYTES + " bytes"); |
|
} |
|
tweakWords = new ulong[]{BytesToWord(tweakBytes, 0), BytesToWord(tweakBytes, 8)}; |
|
} |
|
Init(forEncryption, keyWords, tweakWords); |
|
} |
|
|
|
/// <summary> |
|
/// Initialise the engine, specifying the key and tweak directly. |
|
/// </summary> |
|
/// <param name="forEncryption">the cipher mode.</param> |
|
/// <param name="key">the words of the key, or <code>null</code> to use the current key.</param> |
|
/// <param name="tweak">the 2 word (128 bit) tweak, or <code>null</code> to use the current tweak.</param> |
|
internal void Init(bool forEncryption, ulong[] key, ulong[] tweak) |
|
{ |
|
this.forEncryption = forEncryption; |
|
if (key != null) |
|
{ |
|
SetKey(key); |
|
} |
|
if (tweak != null) |
|
{ |
|
SetTweak(tweak); |
|
} |
|
} |
|
|
|
private void SetKey(ulong[] key) |
|
{ |
|
if (key.Length != this.blocksizeWords) |
|
{ |
|
throw new ArgumentException("Threefish key must be same size as block (" + blocksizeWords |
|
+ " words)"); |
|
} |
|
|
|
/* |
|
* Full subkey schedule is deferred to execution to avoid per cipher overhead (10k for 512, |
|
* 20k for 1024). |
|
* |
|
* Key and tweak word sequences are repeated, and static MOD17/MOD9/MOD5/MOD3 calculations |
|
* used, to avoid expensive mod computations during cipher operation. |
|
*/ |
|
|
|
ulong knw = C_240; |
|
for (int i = 0; i < blocksizeWords; i++) |
|
{ |
|
kw[i] = key[i]; |
|
knw = knw ^ kw[i]; |
|
} |
|
kw[blocksizeWords] = knw; |
|
Array.Copy(kw, 0, kw, blocksizeWords + 1, blocksizeWords); |
|
} |
|
|
|
private void SetTweak(ulong[] tweak) |
|
{ |
|
if (tweak.Length != TWEAK_SIZE_WORDS) |
|
{ |
|
throw new ArgumentException("Tweak must be " + TWEAK_SIZE_WORDS + " words."); |
|
} |
|
|
|
/* |
|
* Tweak schedule partially repeated to avoid mod computations during cipher operation |
|
*/ |
|
t[0] = tweak[0]; |
|
t[1] = tweak[1]; |
|
t[2] = t[0] ^ t[1]; |
|
t[3] = t[0]; |
|
t[4] = t[1]; |
|
} |
|
|
|
public virtual string AlgorithmName |
|
{ |
|
get { return "Threefish-" + (blocksizeBytes * 8); } |
|
} |
|
|
|
public virtual bool IsPartialBlockOkay |
|
{ |
|
get { return false; } |
|
} |
|
|
|
public virtual int GetBlockSize() |
|
{ |
|
return blocksizeBytes; |
|
} |
|
|
|
public virtual void Reset() |
|
{ |
|
} |
|
|
|
public virtual int ProcessBlock(byte[] inBytes, int inOff, byte[] outBytes, int outOff) |
|
{ |
|
if ((outOff + blocksizeBytes) > outBytes.Length) |
|
{ |
|
throw new DataLengthException("Output buffer too short"); |
|
} |
|
|
|
if ((inOff + blocksizeBytes) > inBytes.Length) |
|
{ |
|
throw new DataLengthException("Input buffer too short"); |
|
} |
|
|
|
for (int i = 0; i < blocksizeBytes; i += 8) |
|
{ |
|
currentBlock[i >> 3] = BytesToWord(inBytes, inOff + i); |
|
} |
|
ProcessBlock(this.currentBlock, this.currentBlock); |
|
for (int i = 0; i < blocksizeBytes; i += 8) |
|
{ |
|
WordToBytes(this.currentBlock[i >> 3], outBytes, outOff + i); |
|
} |
|
|
|
return blocksizeBytes; |
|
} |
|
|
|
/// <summary> |
|
/// Process a block of data represented as 64 bit words. |
|
/// </summary> |
|
/// <returns>the number of 8 byte words processed (which will be the same as the block size).</returns> |
|
/// <param name="inWords">a block sized buffer of words to process.</param> |
|
/// <param name="outWords">a block sized buffer of words to receive the output of the operation.</param> |
|
/// <exception cref="DataLengthException">if either the input or output is not block sized</exception> |
|
/// <exception cref="InvalidOperationException">if this engine is not initialised</exception> |
|
internal int ProcessBlock(ulong[] inWords, ulong[] outWords) |
|
{ |
|
if (kw[blocksizeWords] == 0) |
|
{ |
|
throw new InvalidOperationException("Threefish engine not initialised"); |
|
} |
|
|
|
if (inWords.Length != blocksizeWords) |
|
{ |
|
throw new DataLengthException("Input buffer too short"); |
|
} |
|
if (outWords.Length != blocksizeWords) |
|
{ |
|
throw new DataLengthException("Output buffer too short"); |
|
} |
|
|
|
if (forEncryption) |
|
{ |
|
cipher.EncryptBlock(inWords, outWords); |
|
} |
|
else |
|
{ |
|
cipher.DecryptBlock(inWords, outWords); |
|
} |
|
|
|
return blocksizeWords; |
|
} |
|
|
|
/// <summary> |
|
/// Read a single 64 bit word from input in LSB first order. |
|
/// </summary> |
|
internal static ulong BytesToWord(byte[] bytes, int off) |
|
{ |
|
if ((off + 8) > bytes.Length) |
|
{ |
|
// Help the JIT avoid index checks |
|
throw new ArgumentException(); |
|
} |
|
|
|
ulong word = 0; |
|
int index = off; |
|
|
|
word = (bytes[index++] & 0xffUL); |
|
word |= (bytes[index++] & 0xffUL) << 8; |
|
word |= (bytes[index++] & 0xffUL) << 16; |
|
word |= (bytes[index++] & 0xffUL) << 24; |
|
word |= (bytes[index++] & 0xffUL) << 32; |
|
word |= (bytes[index++] & 0xffUL) << 40; |
|
word |= (bytes[index++] & 0xffUL) << 48; |
|
word |= (bytes[index++] & 0xffUL) << 56; |
|
|
|
return word; |
|
} |
|
|
|
/// <summary> |
|
/// Write a 64 bit word to output in LSB first order. |
|
/// </summary> |
|
internal static void WordToBytes(ulong word, byte[] bytes, int off) |
|
{ |
|
if ((off + 8) > bytes.Length) |
|
{ |
|
// Help the JIT avoid index checks |
|
throw new ArgumentException(); |
|
} |
|
int index = off; |
|
|
|
bytes[index++] = (byte)word; |
|
bytes[index++] = (byte)(word >> 8); |
|
bytes[index++] = (byte)(word >> 16); |
|
bytes[index++] = (byte)(word >> 24); |
|
bytes[index++] = (byte)(word >> 32); |
|
bytes[index++] = (byte)(word >> 40); |
|
bytes[index++] = (byte)(word >> 48); |
|
bytes[index++] = (byte)(word >> 56); |
|
} |
|
|
|
/** |
|
* Rotate left + xor part of the mix operation. |
|
*/ |
|
private static ulong RotlXor(ulong x, int n, ulong xor) |
|
{ |
|
return ((x << n) | (x >> (64 - n))) ^ xor; |
|
} |
|
|
|
/** |
|
* Rotate xor + rotate right part of the unmix operation. |
|
*/ |
|
private static ulong XorRotr(ulong x, int n, ulong xor) |
|
{ |
|
ulong xored = x ^ xor; |
|
return (xored >> n) | (xored << (64 - n)); |
|
} |
|
|
|
private abstract class ThreefishCipher |
|
{ |
|
/** |
|
* The extended + repeated tweak words |
|
*/ |
|
protected readonly ulong[] t; |
|
/** |
|
* The extended + repeated key words |
|
*/ |
|
protected readonly ulong[] kw; |
|
|
|
protected ThreefishCipher(ulong[] kw, ulong[] t) |
|
{ |
|
this.kw = kw; |
|
this.t = t; |
|
} |
|
|
|
internal abstract void EncryptBlock(ulong[] block, ulong[] outWords); |
|
|
|
internal abstract void DecryptBlock(ulong[] block, ulong[] outWords); |
|
|
|
} |
|
|
|
private sealed class Threefish256Cipher |
|
: ThreefishCipher |
|
{ |
|
/** |
|
* Mix rotation constants defined in Skein 1.3 specification |
|
*/ |
|
private const int ROTATION_0_0 = 14, ROTATION_0_1 = 16; |
|
private const int ROTATION_1_0 = 52, ROTATION_1_1 = 57; |
|
private const int ROTATION_2_0 = 23, ROTATION_2_1 = 40; |
|
private const int ROTATION_3_0 = 5, ROTATION_3_1 = 37; |
|
|
|
private const int ROTATION_4_0 = 25, ROTATION_4_1 = 33; |
|
private const int ROTATION_5_0 = 46, ROTATION_5_1 = 12; |
|
private const int ROTATION_6_0 = 58, ROTATION_6_1 = 22; |
|
private const int ROTATION_7_0 = 32, ROTATION_7_1 = 32; |
|
|
|
public Threefish256Cipher(ulong[] kw, ulong[] t) |
|
: base(kw, t) |
|
{ |
|
} |
|
|
|
internal override void EncryptBlock(ulong[] block, ulong[] outWords) |
|
{ |
|
ulong[] kw = this.kw; |
|
ulong[] t = this.t; |
|
int[] mod5 = MOD5; |
|
int[] mod3 = MOD3; |
|
|
|
/* Help the JIT avoid index bounds checks */ |
|
if (kw.Length != 9) |
|
{ |
|
throw new ArgumentException(); |
|
} |
|
if (t.Length != 5) |
|
{ |
|
throw new ArgumentException(); |
|
} |
|
|
|
/* |
|
* Read 4 words of plaintext data, not using arrays for cipher state |
|
*/ |
|
ulong b0 = block[0]; |
|
ulong b1 = block[1]; |
|
ulong b2 = block[2]; |
|
ulong b3 = block[3]; |
|
|
|
/* |
|
* First subkey injection. |
|
*/ |
|
b0 += kw[0]; |
|
b1 += kw[1] + t[0]; |
|
b2 += kw[2] + t[1]; |
|
b3 += kw[3]; |
|
|
|
/* |
|
* Rounds loop, unrolled to 8 rounds per iteration. |
|
* |
|
* Unrolling to multiples of 4 avoids the mod 4 check for key injection, and allows |
|
* inlining of the permutations, which cycle every of 2 rounds (avoiding array |
|
* index/lookup). |
|
* |
|
* Unrolling to multiples of 8 avoids the mod 8 rotation constant lookup, and allows |
|
* inlining constant rotation values (avoiding array index/lookup). |
|
*/ |
|
|
|
for (int d = 1; d < (ROUNDS_256 / 4); d += 2) |
|
{ |
|
int dm5 = mod5[d]; |
|
int dm3 = mod3[d]; |
|
|
|
/* |
|
* 4 rounds of mix and permute. |
|
* |
|
* Permute schedule has a 2 round cycle, so permutes are inlined in the mix |
|
* operations in each 4 round block. |
|
*/ |
|
b1 = RotlXor(b1, ROTATION_0_0, b0 += b1); |
|
b3 = RotlXor(b3, ROTATION_0_1, b2 += b3); |
|
|
|
b3 = RotlXor(b3, ROTATION_1_0, b0 += b3); |
|
b1 = RotlXor(b1, ROTATION_1_1, b2 += b1); |
|
|
|
b1 = RotlXor(b1, ROTATION_2_0, b0 += b1); |
|
b3 = RotlXor(b3, ROTATION_2_1, b2 += b3); |
|
|
|
b3 = RotlXor(b3, ROTATION_3_0, b0 += b3); |
|
b1 = RotlXor(b1, ROTATION_3_1, b2 += b1); |
|
|
|
/* |
|
* Subkey injection for first 4 rounds. |
|
*/ |
|
b0 += kw[dm5]; |
|
b1 += kw[dm5 + 1] + t[dm3]; |
|
b2 += kw[dm5 + 2] + t[dm3 + 1]; |
|
b3 += kw[dm5 + 3] + (uint)d; |
|
|
|
/* |
|
* 4 more rounds of mix/permute |
|
*/ |
|
b1 = RotlXor(b1, ROTATION_4_0, b0 += b1); |
|
b3 = RotlXor(b3, ROTATION_4_1, b2 += b3); |
|
|
|
b3 = RotlXor(b3, ROTATION_5_0, b0 += b3); |
|
b1 = RotlXor(b1, ROTATION_5_1, b2 += b1); |
|
|
|
b1 = RotlXor(b1, ROTATION_6_0, b0 += b1); |
|
b3 = RotlXor(b3, ROTATION_6_1, b2 += b3); |
|
|
|
b3 = RotlXor(b3, ROTATION_7_0, b0 += b3); |
|
b1 = RotlXor(b1, ROTATION_7_1, b2 += b1); |
|
|
|
/* |
|
* Subkey injection for next 4 rounds. |
|
*/ |
|
b0 += kw[dm5 + 1]; |
|
b1 += kw[dm5 + 2] + t[dm3 + 1]; |
|
b2 += kw[dm5 + 3] + t[dm3 + 2]; |
|
b3 += kw[dm5 + 4] + (uint)d + 1; |
|
} |
|
|
|
/* |
|
* Output cipher state. |
|
*/ |
|
outWords[0] = b0; |
|
outWords[1] = b1; |
|
outWords[2] = b2; |
|
outWords[3] = b3; |
|
} |
|
|
|
internal override void DecryptBlock(ulong[] block, ulong[] state) |
|
{ |
|
ulong[] kw = this.kw; |
|
ulong[] t = this.t; |
|
int[] mod5 = MOD5; |
|
int[] mod3 = MOD3; |
|
|
|
/* Help the JIT avoid index bounds checks */ |
|
if (kw.Length != 9) |
|
{ |
|
throw new ArgumentException(); |
|
} |
|
if (t.Length != 5) |
|
{ |
|
throw new ArgumentException(); |
|
} |
|
|
|
ulong b0 = block[0]; |
|
ulong b1 = block[1]; |
|
ulong b2 = block[2]; |
|
ulong b3 = block[3]; |
|
|
|
for (int d = (ROUNDS_256 / 4) - 1; d >= 1; d -= 2) |
|
{ |
|
int dm5 = mod5[d]; |
|
int dm3 = mod3[d]; |
|
|
|
/* Reverse key injection for second 4 rounds */ |
|
b0 -= kw[dm5 + 1]; |
|
b1 -= kw[dm5 + 2] + t[dm3 + 1]; |
|
b2 -= kw[dm5 + 3] + t[dm3 + 2]; |
|
b3 -= kw[dm5 + 4] + (uint)d + 1; |
|
|
|
/* Reverse second 4 mix/permute rounds */ |
|
|
|
b3 = XorRotr(b3, ROTATION_7_0, b0); |
|
b0 -= b3; |
|
b1 = XorRotr(b1, ROTATION_7_1, b2); |
|
b2 -= b1; |
|
|
|
b1 = XorRotr(b1, ROTATION_6_0, b0); |
|
b0 -= b1; |
|
b3 = XorRotr(b3, ROTATION_6_1, b2); |
|
b2 -= b3; |
|
|
|
b3 = XorRotr(b3, ROTATION_5_0, b0); |
|
b0 -= b3; |
|
b1 = XorRotr(b1, ROTATION_5_1, b2); |
|
b2 -= b1; |
|
|
|
b1 = XorRotr(b1, ROTATION_4_0, b0); |
|
b0 -= b1; |
|
b3 = XorRotr(b3, ROTATION_4_1, b2); |
|
b2 -= b3; |
|
|
|
/* Reverse key injection for first 4 rounds */ |
|
b0 -= kw[dm5]; |
|
b1 -= kw[dm5 + 1] + t[dm3]; |
|
b2 -= kw[dm5 + 2] + t[dm3 + 1]; |
|
b3 -= kw[dm5 + 3] + (uint)d; |
|
|
|
/* Reverse first 4 mix/permute rounds */ |
|
b3 = XorRotr(b3, ROTATION_3_0, b0); |
|
b0 -= b3; |
|
b1 = XorRotr(b1, ROTATION_3_1, b2); |
|
b2 -= b1; |
|
|
|
b1 = XorRotr(b1, ROTATION_2_0, b0); |
|
b0 -= b1; |
|
b3 = XorRotr(b3, ROTATION_2_1, b2); |
|
b2 -= b3; |
|
|
|
b3 = XorRotr(b3, ROTATION_1_0, b0); |
|
b0 -= b3; |
|
b1 = XorRotr(b1, ROTATION_1_1, b2); |
|
b2 -= b1; |
|
|
|
b1 = XorRotr(b1, ROTATION_0_0, b0); |
|
b0 -= b1; |
|
b3 = XorRotr(b3, ROTATION_0_1, b2); |
|
b2 -= b3; |
|
} |
|
|
|
/* |
|
* First subkey uninjection. |
|
*/ |
|
b0 -= kw[0]; |
|
b1 -= kw[1] + t[0]; |
|
b2 -= kw[2] + t[1]; |
|
b3 -= kw[3]; |
|
|
|
/* |
|
* Output cipher state. |
|
*/ |
|
state[0] = b0; |
|
state[1] = b1; |
|
state[2] = b2; |
|
state[3] = b3; |
|
} |
|
|
|
} |
|
|
|
private sealed class Threefish512Cipher |
|
: ThreefishCipher |
|
{ |
|
/** |
|
* Mix rotation constants defined in Skein 1.3 specification |
|
*/ |
|
private const int ROTATION_0_0 = 46, ROTATION_0_1 = 36, ROTATION_0_2 = 19, ROTATION_0_3 = 37; |
|
private const int ROTATION_1_0 = 33, ROTATION_1_1 = 27, ROTATION_1_2 = 14, ROTATION_1_3 = 42; |
|
private const int ROTATION_2_0 = 17, ROTATION_2_1 = 49, ROTATION_2_2 = 36, ROTATION_2_3 = 39; |
|
private const int ROTATION_3_0 = 44, ROTATION_3_1 = 9, ROTATION_3_2 = 54, ROTATION_3_3 = 56; |
|
|
|
private const int ROTATION_4_0 = 39, ROTATION_4_1 = 30, ROTATION_4_2 = 34, ROTATION_4_3 = 24; |
|
private const int ROTATION_5_0 = 13, ROTATION_5_1 = 50, ROTATION_5_2 = 10, ROTATION_5_3 = 17; |
|
private const int ROTATION_6_0 = 25, ROTATION_6_1 = 29, ROTATION_6_2 = 39, ROTATION_6_3 = 43; |
|
private const int ROTATION_7_0 = 8, ROTATION_7_1 = 35, ROTATION_7_2 = 56, ROTATION_7_3 = 22; |
|
|
|
internal Threefish512Cipher(ulong[] kw, ulong[] t) |
|
: base(kw, t) |
|
{ |
|
} |
|
|
|
internal override void EncryptBlock(ulong[] block, ulong[] outWords) |
|
{ |
|
ulong[] kw = this.kw; |
|
ulong[] t = this.t; |
|
int[] mod9 = MOD9; |
|
int[] mod3 = MOD3; |
|
|
|
/* Help the JIT avoid index bounds checks */ |
|
if (kw.Length != 17) |
|
{ |
|
throw new ArgumentException(); |
|
} |
|
if (t.Length != 5) |
|
{ |
|
throw new ArgumentException(); |
|
} |
|
|
|
/* |
|
* Read 8 words of plaintext data, not using arrays for cipher state |
|
*/ |
|
ulong b0 = block[0]; |
|
ulong b1 = block[1]; |
|
ulong b2 = block[2]; |
|
ulong b3 = block[3]; |
|
ulong b4 = block[4]; |
|
ulong b5 = block[5]; |
|
ulong b6 = block[6]; |
|
ulong b7 = block[7]; |
|
|
|
/* |
|
* First subkey injection. |
|
*/ |
|
b0 += kw[0]; |
|
b1 += kw[1]; |
|
b2 += kw[2]; |
|
b3 += kw[3]; |
|
b4 += kw[4]; |
|
b5 += kw[5] + t[0]; |
|
b6 += kw[6] + t[1]; |
|
b7 += kw[7]; |
|
|
|
/* |
|
* Rounds loop, unrolled to 8 rounds per iteration. |
|
* |
|
* Unrolling to multiples of 4 avoids the mod 4 check for key injection, and allows |
|
* inlining of the permutations, which cycle every of 4 rounds (avoiding array |
|
* index/lookup). |
|
* |
|
* Unrolling to multiples of 8 avoids the mod 8 rotation constant lookup, and allows |
|
* inlining constant rotation values (avoiding array index/lookup). |
|
*/ |
|
|
|
for (int d = 1; d < (ROUNDS_512 / 4); d += 2) |
|
{ |
|
int dm9 = mod9[d]; |
|
int dm3 = mod3[d]; |
|
|
|
/* |
|
* 4 rounds of mix and permute. |
|
* |
|
* Permute schedule has a 4 round cycle, so permutes are inlined in the mix |
|
* operations in each 4 round block. |
|
*/ |
|
b1 = RotlXor(b1, ROTATION_0_0, b0 += b1); |
|
b3 = RotlXor(b3, ROTATION_0_1, b2 += b3); |
|
b5 = RotlXor(b5, ROTATION_0_2, b4 += b5); |
|
b7 = RotlXor(b7, ROTATION_0_3, b6 += b7); |
|
|
|
b1 = RotlXor(b1, ROTATION_1_0, b2 += b1); |
|
b7 = RotlXor(b7, ROTATION_1_1, b4 += b7); |
|
b5 = RotlXor(b5, ROTATION_1_2, b6 += b5); |
|
b3 = RotlXor(b3, ROTATION_1_3, b0 += b3); |
|
|
|
b1 = RotlXor(b1, ROTATION_2_0, b4 += b1); |
|
b3 = RotlXor(b3, ROTATION_2_1, b6 += b3); |
|
b5 = RotlXor(b5, ROTATION_2_2, b0 += b5); |
|
b7 = RotlXor(b7, ROTATION_2_3, b2 += b7); |
|
|
|
b1 = RotlXor(b1, ROTATION_3_0, b6 += b1); |
|
b7 = RotlXor(b7, ROTATION_3_1, b0 += b7); |
|
b5 = RotlXor(b5, ROTATION_3_2, b2 += b5); |
|
b3 = RotlXor(b3, ROTATION_3_3, b4 += b3); |
|
|
|
/* |
|
* Subkey injection for first 4 rounds. |
|
*/ |
|
b0 += kw[dm9]; |
|
b1 += kw[dm9 + 1]; |
|
b2 += kw[dm9 + 2]; |
|
b3 += kw[dm9 + 3]; |
|
b4 += kw[dm9 + 4]; |
|
b5 += kw[dm9 + 5] + t[dm3]; |
|
b6 += kw[dm9 + 6] + t[dm3 + 1]; |
|
b7 += kw[dm9 + 7] + (uint)d; |
|
|
|
/* |
|
* 4 more rounds of mix/permute |
|
*/ |
|
b1 = RotlXor(b1, ROTATION_4_0, b0 += b1); |
|
b3 = RotlXor(b3, ROTATION_4_1, b2 += b3); |
|
b5 = RotlXor(b5, ROTATION_4_2, b4 += b5); |
|
b7 = RotlXor(b7, ROTATION_4_3, b6 += b7); |
|
|
|
b1 = RotlXor(b1, ROTATION_5_0, b2 += b1); |
|
b7 = RotlXor(b7, ROTATION_5_1, b4 += b7); |
|
b5 = RotlXor(b5, ROTATION_5_2, b6 += b5); |
|
b3 = RotlXor(b3, ROTATION_5_3, b0 += b3); |
|
|
|
b1 = RotlXor(b1, ROTATION_6_0, b4 += b1); |
|
b3 = RotlXor(b3, ROTATION_6_1, b6 += b3); |
|
b5 = RotlXor(b5, ROTATION_6_2, b0 += b5); |
|
b7 = RotlXor(b7, ROTATION_6_3, b2 += b7); |
|
|
|
b1 = RotlXor(b1, ROTATION_7_0, b6 += b1); |
|
b7 = RotlXor(b7, ROTATION_7_1, b0 += b7); |
|
b5 = RotlXor(b5, ROTATION_7_2, b2 += b5); |
|
b3 = RotlXor(b3, ROTATION_7_3, b4 += b3); |
|
|
|
/* |
|
* Subkey injection for next 4 rounds. |
|
*/ |
|
b0 += kw[dm9 + 1]; |
|
b1 += kw[dm9 + 2]; |
|
b2 += kw[dm9 + 3]; |
|
b3 += kw[dm9 + 4]; |
|
b4 += kw[dm9 + 5]; |
|
b5 += kw[dm9 + 6] + t[dm3 + 1]; |
|
b6 += kw[dm9 + 7] + t[dm3 + 2]; |
|
b7 += kw[dm9 + 8] + (uint)d + 1; |
|
} |
|
|
|
/* |
|
* Output cipher state. |
|
*/ |
|
outWords[0] = b0; |
|
outWords[1] = b1; |
|
outWords[2] = b2; |
|
outWords[3] = b3; |
|
outWords[4] = b4; |
|
outWords[5] = b5; |
|
outWords[6] = b6; |
|
outWords[7] = b7; |
|
} |
|
|
|
internal override void DecryptBlock(ulong[] block, ulong[] state) |
|
{ |
|
ulong[] kw = this.kw; |
|
ulong[] t = this.t; |
|
int[] mod9 = MOD9; |
|
int[] mod3 = MOD3; |
|
|
|
/* Help the JIT avoid index bounds checks */ |
|
if (kw.Length != 17) |
|
{ |
|
throw new ArgumentException(); |
|
} |
|
if (t.Length != 5) |
|
{ |
|
throw new ArgumentException(); |
|
} |
|
|
|
ulong b0 = block[0]; |
|
ulong b1 = block[1]; |
|
ulong b2 = block[2]; |
|
ulong b3 = block[3]; |
|
ulong b4 = block[4]; |
|
ulong b5 = block[5]; |
|
ulong b6 = block[6]; |
|
ulong b7 = block[7]; |
|
|
|
for (int d = (ROUNDS_512 / 4) - 1; d >= 1; d -= 2) |
|
{ |
|
int dm9 = mod9[d]; |
|
int dm3 = mod3[d]; |
|
|
|
/* Reverse key injection for second 4 rounds */ |
|
b0 -= kw[dm9 + 1]; |
|
b1 -= kw[dm9 + 2]; |
|
b2 -= kw[dm9 + 3]; |
|
b3 -= kw[dm9 + 4]; |
|
b4 -= kw[dm9 + 5]; |
|
b5 -= kw[dm9 + 6] + t[dm3 + 1]; |
|
b6 -= kw[dm9 + 7] + t[dm3 + 2]; |
|
b7 -= kw[dm9 + 8] + (uint)d + 1; |
|
|
|
/* Reverse second 4 mix/permute rounds */ |
|
|
|
b1 = XorRotr(b1, ROTATION_7_0, b6); |
|
b6 -= b1; |
|
b7 = XorRotr(b7, ROTATION_7_1, b0); |
|
b0 -= b7; |
|
b5 = XorRotr(b5, ROTATION_7_2, b2); |
|
b2 -= b5; |
|
b3 = XorRotr(b3, ROTATION_7_3, b4); |
|
b4 -= b3; |
|
|
|
b1 = XorRotr(b1, ROTATION_6_0, b4); |
|
b4 -= b1; |
|
b3 = XorRotr(b3, ROTATION_6_1, b6); |
|
b6 -= b3; |
|
b5 = XorRotr(b5, ROTATION_6_2, b0); |
|
b0 -= b5; |
|
b7 = XorRotr(b7, ROTATION_6_3, b2); |
|
b2 -= b7; |
|
|
|
b1 = XorRotr(b1, ROTATION_5_0, b2); |
|
b2 -= b1; |
|
b7 = XorRotr(b7, ROTATION_5_1, b4); |
|
b4 -= b7; |
|
b5 = XorRotr(b5, ROTATION_5_2, b6); |
|
b6 -= b5; |
|
b3 = XorRotr(b3, ROTATION_5_3, b0); |
|
b0 -= b3; |
|
|
|
b1 = XorRotr(b1, ROTATION_4_0, b0); |
|
b0 -= b1; |
|
b3 = XorRotr(b3, ROTATION_4_1, b2); |
|
b2 -= b3; |
|
b5 = XorRotr(b5, ROTATION_4_2, b4); |
|
b4 -= b5; |
|
b7 = XorRotr(b7, ROTATION_4_3, b6); |
|
b6 -= b7; |
|
|
|
/* Reverse key injection for first 4 rounds */ |
|
b0 -= kw[dm9]; |
|
b1 -= kw[dm9 + 1]; |
|
b2 -= kw[dm9 + 2]; |
|
b3 -= kw[dm9 + 3]; |
|
b4 -= kw[dm9 + 4]; |
|
b5 -= kw[dm9 + 5] + t[dm3]; |
|
b6 -= kw[dm9 + 6] + t[dm3 + 1]; |
|
b7 -= kw[dm9 + 7] + (uint)d; |
|
|
|
/* Reverse first 4 mix/permute rounds */ |
|
b1 = XorRotr(b1, ROTATION_3_0, b6); |
|
b6 -= b1; |
|
b7 = XorRotr(b7, ROTATION_3_1, b0); |
|
b0 -= b7; |
|
b5 = XorRotr(b5, ROTATION_3_2, b2); |
|
b2 -= b5; |
|
b3 = XorRotr(b3, ROTATION_3_3, b4); |
|
b4 -= b3; |
|
|
|
b1 = XorRotr(b1, ROTATION_2_0, b4); |
|
b4 -= b1; |
|
b3 = XorRotr(b3, ROTATION_2_1, b6); |
|
b6 -= b3; |
|
b5 = XorRotr(b5, ROTATION_2_2, b0); |
|
b0 -= b5; |
|
b7 = XorRotr(b7, ROTATION_2_3, b2); |
|
b2 -= b7; |
|
|
|
b1 = XorRotr(b1, ROTATION_1_0, b2); |
|
b2 -= b1; |
|
b7 = XorRotr(b7, ROTATION_1_1, b4); |
|
b4 -= b7; |
|
b5 = XorRotr(b5, ROTATION_1_2, b6); |
|
b6 -= b5; |
|
b3 = XorRotr(b3, ROTATION_1_3, b0); |
|
b0 -= b3; |
|
|
|
b1 = XorRotr(b1, ROTATION_0_0, b0); |
|
b0 -= b1; |
|
b3 = XorRotr(b3, ROTATION_0_1, b2); |
|
b2 -= b3; |
|
b5 = XorRotr(b5, ROTATION_0_2, b4); |
|
b4 -= b5; |
|
b7 = XorRotr(b7, ROTATION_0_3, b6); |
|
b6 -= b7; |
|
} |
|
|
|
/* |
|
* First subkey uninjection. |
|
*/ |
|
b0 -= kw[0]; |
|
b1 -= kw[1]; |
|
b2 -= kw[2]; |
|
b3 -= kw[3]; |
|
b4 -= kw[4]; |
|
b5 -= kw[5] + t[0]; |
|
b6 -= kw[6] + t[1]; |
|
b7 -= kw[7]; |
|
|
|
/* |
|
* Output cipher state. |
|
*/ |
|
state[0] = b0; |
|
state[1] = b1; |
|
state[2] = b2; |
|
state[3] = b3; |
|
state[4] = b4; |
|
state[5] = b5; |
|
state[6] = b6; |
|
state[7] = b7; |
|
} |
|
} |
|
|
|
private sealed class Threefish1024Cipher |
|
: ThreefishCipher |
|
{ |
|
/** |
|
* Mix rotation constants defined in Skein 1.3 specification |
|
*/ |
|
private const int ROTATION_0_0 = 24, ROTATION_0_1 = 13, ROTATION_0_2 = 8, ROTATION_0_3 = 47; |
|
private const int ROTATION_0_4 = 8, ROTATION_0_5 = 17, ROTATION_0_6 = 22, ROTATION_0_7 = 37; |
|
private const int ROTATION_1_0 = 38, ROTATION_1_1 = 19, ROTATION_1_2 = 10, ROTATION_1_3 = 55; |
|
private const int ROTATION_1_4 = 49, ROTATION_1_5 = 18, ROTATION_1_6 = 23, ROTATION_1_7 = 52; |
|
private const int ROTATION_2_0 = 33, ROTATION_2_1 = 4, ROTATION_2_2 = 51, ROTATION_2_3 = 13; |
|
private const int ROTATION_2_4 = 34, ROTATION_2_5 = 41, ROTATION_2_6 = 59, ROTATION_2_7 = 17; |
|
private const int ROTATION_3_0 = 5, ROTATION_3_1 = 20, ROTATION_3_2 = 48, ROTATION_3_3 = 41; |
|
private const int ROTATION_3_4 = 47, ROTATION_3_5 = 28, ROTATION_3_6 = 16, ROTATION_3_7 = 25; |
|
|
|
private const int ROTATION_4_0 = 41, ROTATION_4_1 = 9, ROTATION_4_2 = 37, ROTATION_4_3 = 31; |
|
private const int ROTATION_4_4 = 12, ROTATION_4_5 = 47, ROTATION_4_6 = 44, ROTATION_4_7 = 30; |
|
private const int ROTATION_5_0 = 16, ROTATION_5_1 = 34, ROTATION_5_2 = 56, ROTATION_5_3 = 51; |
|
private const int ROTATION_5_4 = 4, ROTATION_5_5 = 53, ROTATION_5_6 = 42, ROTATION_5_7 = 41; |
|
private const int ROTATION_6_0 = 31, ROTATION_6_1 = 44, ROTATION_6_2 = 47, ROTATION_6_3 = 46; |
|
private const int ROTATION_6_4 = 19, ROTATION_6_5 = 42, ROTATION_6_6 = 44, ROTATION_6_7 = 25; |
|
private const int ROTATION_7_0 = 9, ROTATION_7_1 = 48, ROTATION_7_2 = 35, ROTATION_7_3 = 52; |
|
private const int ROTATION_7_4 = 23, ROTATION_7_5 = 31, ROTATION_7_6 = 37, ROTATION_7_7 = 20; |
|
|
|
public Threefish1024Cipher(ulong[] kw, ulong[] t) |
|
: base(kw, t) |
|
{ |
|
} |
|
|
|
internal override void EncryptBlock(ulong[] block, ulong[] outWords) |
|
{ |
|
ulong[] kw = this.kw; |
|
ulong[] t = this.t; |
|
int[] mod17 = MOD17; |
|
int[] mod3 = MOD3; |
|
|
|
/* Help the JIT avoid index bounds checks */ |
|
if (kw.Length != 33) |
|
{ |
|
throw new ArgumentException(); |
|
} |
|
if (t.Length != 5) |
|
{ |
|
throw new ArgumentException(); |
|
} |
|
|
|
/* |
|
* Read 16 words of plaintext data, not using arrays for cipher state |
|
*/ |
|
ulong b0 = block[0]; |
|
ulong b1 = block[1]; |
|
ulong b2 = block[2]; |
|
ulong b3 = block[3]; |
|
ulong b4 = block[4]; |
|
ulong b5 = block[5]; |
|
ulong b6 = block[6]; |
|
ulong b7 = block[7]; |
|
ulong b8 = block[8]; |
|
ulong b9 = block[9]; |
|
ulong b10 = block[10]; |
|
ulong b11 = block[11]; |
|
ulong b12 = block[12]; |
|
ulong b13 = block[13]; |
|
ulong b14 = block[14]; |
|
ulong b15 = block[15]; |
|
|
|
/* |
|
* First subkey injection. |
|
*/ |
|
b0 += kw[0]; |
|
b1 += kw[1]; |
|
b2 += kw[2]; |
|
b3 += kw[3]; |
|
b4 += kw[4]; |
|
b5 += kw[5]; |
|
b6 += kw[6]; |
|
b7 += kw[7]; |
|
b8 += kw[8]; |
|
b9 += kw[9]; |
|
b10 += kw[10]; |
|
b11 += kw[11]; |
|
b12 += kw[12]; |
|
b13 += kw[13] + t[0]; |
|
b14 += kw[14] + t[1]; |
|
b15 += kw[15]; |
|
|
|
/* |
|
* Rounds loop, unrolled to 8 rounds per iteration. |
|
* |
|
* Unrolling to multiples of 4 avoids the mod 4 check for key injection, and allows |
|
* inlining of the permutations, which cycle every of 4 rounds (avoiding array |
|
* index/lookup). |
|
* |
|
* Unrolling to multiples of 8 avoids the mod 8 rotation constant lookup, and allows |
|
* inlining constant rotation values (avoiding array index/lookup). |
|
*/ |
|
|
|
for (int d = 1; d < (ROUNDS_1024 / 4); d += 2) |
|
{ |
|
int dm17 = mod17[d]; |
|
int dm3 = mod3[d]; |
|
|
|
/* |
|
* 4 rounds of mix and permute. |
|
* |
|
* Permute schedule has a 4 round cycle, so permutes are inlined in the mix |
|
* operations in each 4 round block. |
|
*/ |
|
b1 = RotlXor(b1, ROTATION_0_0, b0 += b1); |
|
b3 = RotlXor(b3, ROTATION_0_1, b2 += b3); |
|
b5 = RotlXor(b5, ROTATION_0_2, b4 += b5); |
|
b7 = RotlXor(b7, ROTATION_0_3, b6 += b7); |
|
b9 = RotlXor(b9, ROTATION_0_4, b8 += b9); |
|
b11 = RotlXor(b11, ROTATION_0_5, b10 += b11); |
|
b13 = RotlXor(b13, ROTATION_0_6, b12 += b13); |
|
b15 = RotlXor(b15, ROTATION_0_7, b14 += b15); |
|
|
|
b9 = RotlXor(b9, ROTATION_1_0, b0 += b9); |
|
b13 = RotlXor(b13, ROTATION_1_1, b2 += b13); |
|
b11 = RotlXor(b11, ROTATION_1_2, b6 += b11); |
|
b15 = RotlXor(b15, ROTATION_1_3, b4 += b15); |
|
b7 = RotlXor(b7, ROTATION_1_4, b10 += b7); |
|
b3 = RotlXor(b3, ROTATION_1_5, b12 += b3); |
|
b5 = RotlXor(b5, ROTATION_1_6, b14 += b5); |
|
b1 = RotlXor(b1, ROTATION_1_7, b8 += b1); |
|
|
|
b7 = RotlXor(b7, ROTATION_2_0, b0 += b7); |
|
b5 = RotlXor(b5, ROTATION_2_1, b2 += b5); |
|
b3 = RotlXor(b3, ROTATION_2_2, b4 += b3); |
|
b1 = RotlXor(b1, ROTATION_2_3, b6 += b1); |
|
b15 = RotlXor(b15, ROTATION_2_4, b12 += b15); |
|
b13 = RotlXor(b13, ROTATION_2_5, b14 += b13); |
|
b11 = RotlXor(b11, ROTATION_2_6, b8 += b11); |
|
b9 = RotlXor(b9, ROTATION_2_7, b10 += b9); |
|
|
|
b15 = RotlXor(b15, ROTATION_3_0, b0 += b15); |
|
b11 = RotlXor(b11, ROTATION_3_1, b2 += b11); |
|
b13 = RotlXor(b13, ROTATION_3_2, b6 += b13); |
|
b9 = RotlXor(b9, ROTATION_3_3, b4 += b9); |
|
b1 = RotlXor(b1, ROTATION_3_4, b14 += b1); |
|
b5 = RotlXor(b5, ROTATION_3_5, b8 += b5); |
|
b3 = RotlXor(b3, ROTATION_3_6, b10 += b3); |
|
b7 = RotlXor(b7, ROTATION_3_7, b12 += b7); |
|
|
|
/* |
|
* Subkey injection for first 4 rounds. |
|
*/ |
|
b0 += kw[dm17]; |
|
b1 += kw[dm17 + 1]; |
|
b2 += kw[dm17 + 2]; |
|
b3 += kw[dm17 + 3]; |
|
b4 += kw[dm17 + 4]; |
|
b5 += kw[dm17 + 5]; |
|
b6 += kw[dm17 + 6]; |
|
b7 += kw[dm17 + 7]; |
|
b8 += kw[dm17 + 8]; |
|
b9 += kw[dm17 + 9]; |
|
b10 += kw[dm17 + 10]; |
|
b11 += kw[dm17 + 11]; |
|
b12 += kw[dm17 + 12]; |
|
b13 += kw[dm17 + 13] + t[dm3]; |
|
b14 += kw[dm17 + 14] + t[dm3 + 1]; |
|
b15 += kw[dm17 + 15] + (uint)d; |
|
|
|
/* |
|
* 4 more rounds of mix/permute |
|
*/ |
|
b1 = RotlXor(b1, ROTATION_4_0, b0 += b1); |
|
b3 = RotlXor(b3, ROTATION_4_1, b2 += b3); |
|
b5 = RotlXor(b5, ROTATION_4_2, b4 += b5); |
|
b7 = RotlXor(b7, ROTATION_4_3, b6 += b7); |
|
b9 = RotlXor(b9, ROTATION_4_4, b8 += b9); |
|
b11 = RotlXor(b11, ROTATION_4_5, b10 += b11); |
|
b13 = RotlXor(b13, ROTATION_4_6, b12 += b13); |
|
b15 = RotlXor(b15, ROTATION_4_7, b14 += b15); |
|
|
|
b9 = RotlXor(b9, ROTATION_5_0, b0 += b9); |
|
b13 = RotlXor(b13, ROTATION_5_1, b2 += b13); |
|
b11 = RotlXor(b11, ROTATION_5_2, b6 += b11); |
|
b15 = RotlXor(b15, ROTATION_5_3, b4 += b15); |
|
b7 = RotlXor(b7, ROTATION_5_4, b10 += b7); |
|
b3 = RotlXor(b3, ROTATION_5_5, b12 += b3); |
|
b5 = RotlXor(b5, ROTATION_5_6, b14 += b5); |
|
b1 = RotlXor(b1, ROTATION_5_7, b8 += b1); |
|
|
|
b7 = RotlXor(b7, ROTATION_6_0, b0 += b7); |
|
b5 = RotlXor(b5, ROTATION_6_1, b2 += b5); |
|
b3 = RotlXor(b3, ROTATION_6_2, b4 += b3); |
|
b1 = RotlXor(b1, ROTATION_6_3, b6 += b1); |
|
b15 = RotlXor(b15, ROTATION_6_4, b12 += b15); |
|
b13 = RotlXor(b13, ROTATION_6_5, b14 += b13); |
|
b11 = RotlXor(b11, ROTATION_6_6, b8 += b11); |
|
b9 = RotlXor(b9, ROTATION_6_7, b10 += b9); |
|
|
|
b15 = RotlXor(b15, ROTATION_7_0, b0 += b15); |
|
b11 = RotlXor(b11, ROTATION_7_1, b2 += b11); |
|
b13 = RotlXor(b13, ROTATION_7_2, b6 += b13); |
|
b9 = RotlXor(b9, ROTATION_7_3, b4 += b9); |
|
b1 = RotlXor(b1, ROTATION_7_4, b14 += b1); |
|
b5 = RotlXor(b5, ROTATION_7_5, b8 += b5); |
|
b3 = RotlXor(b3, ROTATION_7_6, b10 += b3); |
|
b7 = RotlXor(b7, ROTATION_7_7, b12 += b7); |
|
|
|
/* |
|
* Subkey injection for next 4 rounds. |
|
*/ |
|
b0 += kw[dm17 + 1]; |
|
b1 += kw[dm17 + 2]; |
|
b2 += kw[dm17 + 3]; |
|
b3 += kw[dm17 + 4]; |
|
b4 += kw[dm17 + 5]; |
|
b5 += kw[dm17 + 6]; |
|
b6 += kw[dm17 + 7]; |
|
b7 += kw[dm17 + 8]; |
|
b8 += kw[dm17 + 9]; |
|
b9 += kw[dm17 + 10]; |
|
b10 += kw[dm17 + 11]; |
|
b11 += kw[dm17 + 12]; |
|
b12 += kw[dm17 + 13]; |
|
b13 += kw[dm17 + 14] + t[dm3 + 1]; |
|
b14 += kw[dm17 + 15] + t[dm3 + 2]; |
|
b15 += kw[dm17 + 16] + (uint)d + 1; |
|
|
|
} |
|
|
|
/* |
|
* Output cipher state. |
|
*/ |
|
outWords[0] = b0; |
|
outWords[1] = b1; |
|
outWords[2] = b2; |
|
outWords[3] = b3; |
|
outWords[4] = b4; |
|
outWords[5] = b5; |
|
outWords[6] = b6; |
|
outWords[7] = b7; |
|
outWords[8] = b8; |
|
outWords[9] = b9; |
|
outWords[10] = b10; |
|
outWords[11] = b11; |
|
outWords[12] = b12; |
|
outWords[13] = b13; |
|
outWords[14] = b14; |
|
outWords[15] = b15; |
|
} |
|
|
|
internal override void DecryptBlock(ulong[] block, ulong[] state) |
|
{ |
|
ulong[] kw = this.kw; |
|
ulong[] t = this.t; |
|
int[] mod17 = MOD17; |
|
int[] mod3 = MOD3; |
|
|
|
/* Help the JIT avoid index bounds checks */ |
|
if (kw.Length != 33) |
|
{ |
|
throw new ArgumentException(); |
|
} |
|
if (t.Length != 5) |
|
{ |
|
throw new ArgumentException(); |
|
} |
|
|
|
ulong b0 = block[0]; |
|
ulong b1 = block[1]; |
|
ulong b2 = block[2]; |
|
ulong b3 = block[3]; |
|
ulong b4 = block[4]; |
|
ulong b5 = block[5]; |
|
ulong b6 = block[6]; |
|
ulong b7 = block[7]; |
|
ulong b8 = block[8]; |
|
ulong b9 = block[9]; |
|
ulong b10 = block[10]; |
|
ulong b11 = block[11]; |
|
ulong b12 = block[12]; |
|
ulong b13 = block[13]; |
|
ulong b14 = block[14]; |
|
ulong b15 = block[15]; |
|
|
|
for (int d = (ROUNDS_1024 / 4) - 1; d >= 1; d -= 2) |
|
{ |
|
int dm17 = mod17[d]; |
|
int dm3 = mod3[d]; |
|
|
|
/* Reverse key injection for second 4 rounds */ |
|
b0 -= kw[dm17 + 1]; |
|
b1 -= kw[dm17 + 2]; |
|
b2 -= kw[dm17 + 3]; |
|
b3 -= kw[dm17 + 4]; |
|
b4 -= kw[dm17 + 5]; |
|
b5 -= kw[dm17 + 6]; |
|
b6 -= kw[dm17 + 7]; |
|
b7 -= kw[dm17 + 8]; |
|
b8 -= kw[dm17 + 9]; |
|
b9 -= kw[dm17 + 10]; |
|
b10 -= kw[dm17 + 11]; |
|
b11 -= kw[dm17 + 12]; |
|
b12 -= kw[dm17 + 13]; |
|
b13 -= kw[dm17 + 14] + t[dm3 + 1]; |
|
b14 -= kw[dm17 + 15] + t[dm3 + 2]; |
|
b15 -= kw[dm17 + 16] + (uint)d + 1; |
|
|
|
/* Reverse second 4 mix/permute rounds */ |
|
b15 = XorRotr(b15, ROTATION_7_0, b0); |
|
b0 -= b15; |
|
b11 = XorRotr(b11, ROTATION_7_1, b2); |
|
b2 -= b11; |
|
b13 = XorRotr(b13, ROTATION_7_2, b6); |
|
b6 -= b13; |
|
b9 = XorRotr(b9, ROTATION_7_3, b4); |
|
b4 -= b9; |
|
b1 = XorRotr(b1, ROTATION_7_4, b14); |
|
b14 -= b1; |
|
b5 = XorRotr(b5, ROTATION_7_5, b8); |
|
b8 -= b5; |
|
b3 = XorRotr(b3, ROTATION_7_6, b10); |
|
b10 -= b3; |
|
b7 = XorRotr(b7, ROTATION_7_7, b12); |
|
b12 -= b7; |
|
|
|
b7 = XorRotr(b7, ROTATION_6_0, b0); |
|
b0 -= b7; |
|
b5 = XorRotr(b5, ROTATION_6_1, b2); |
|
b2 -= b5; |
|
b3 = XorRotr(b3, ROTATION_6_2, b4); |
|
b4 -= b3; |
|
b1 = XorRotr(b1, ROTATION_6_3, b6); |
|
b6 -= b1; |
|
b15 = XorRotr(b15, ROTATION_6_4, b12); |
|
b12 -= b15; |
|
b13 = XorRotr(b13, ROTATION_6_5, b14); |
|
b14 -= b13; |
|
b11 = XorRotr(b11, ROTATION_6_6, b8); |
|
b8 -= b11; |
|
b9 = XorRotr(b9, ROTATION_6_7, b10); |
|
b10 -= b9; |
|
|
|
b9 = XorRotr(b9, ROTATION_5_0, b0); |
|
b0 -= b9; |
|
b13 = XorRotr(b13, ROTATION_5_1, b2); |
|
b2 -= b13; |
|
b11 = XorRotr(b11, ROTATION_5_2, b6); |
|
b6 -= b11; |
|
b15 = XorRotr(b15, ROTATION_5_3, b4); |
|
b4 -= b15; |
|
b7 = XorRotr(b7, ROTATION_5_4, b10); |
|
b10 -= b7; |
|
b3 = XorRotr(b3, ROTATION_5_5, b12); |
|
b12 -= b3; |
|
b5 = XorRotr(b5, ROTATION_5_6, b14); |
|
b14 -= b5; |
|
b1 = XorRotr(b1, ROTATION_5_7, b8); |
|
b8 -= b1; |
|
|
|
b1 = XorRotr(b1, ROTATION_4_0, b0); |
|
b0 -= b1; |
|
b3 = XorRotr(b3, ROTATION_4_1, b2); |
|
b2 -= b3; |
|
b5 = XorRotr(b5, ROTATION_4_2, b4); |
|
b4 -= b5; |
|
b7 = XorRotr(b7, ROTATION_4_3, b6); |
|
b6 -= b7; |
|
b9 = XorRotr(b9, ROTATION_4_4, b8); |
|
b8 -= b9; |
|
b11 = XorRotr(b11, ROTATION_4_5, b10); |
|
b10 -= b11; |
|
b13 = XorRotr(b13, ROTATION_4_6, b12); |
|
b12 -= b13; |
|
b15 = XorRotr(b15, ROTATION_4_7, b14); |
|
b14 -= b15; |
|
|
|
/* Reverse key injection for first 4 rounds */ |
|
b0 -= kw[dm17]; |
|
b1 -= kw[dm17 + 1]; |
|
b2 -= kw[dm17 + 2]; |
|
b3 -= kw[dm17 + 3]; |
|
b4 -= kw[dm17 + 4]; |
|
b5 -= kw[dm17 + 5]; |
|
b6 -= kw[dm17 + 6]; |
|
b7 -= kw[dm17 + 7]; |
|
b8 -= kw[dm17 + 8]; |
|
b9 -= kw[dm17 + 9]; |
|
b10 -= kw[dm17 + 10]; |
|
b11 -= kw[dm17 + 11]; |
|
b12 -= kw[dm17 + 12]; |
|
b13 -= kw[dm17 + 13] + t[dm3]; |
|
b14 -= kw[dm17 + 14] + t[dm3 + 1]; |
|
b15 -= kw[dm17 + 15] + (uint)d; |
|
|
|
/* Reverse first 4 mix/permute rounds */ |
|
b15 = XorRotr(b15, ROTATION_3_0, b0); |
|
b0 -= b15; |
|
b11 = XorRotr(b11, ROTATION_3_1, b2); |
|
b2 -= b11; |
|
b13 = XorRotr(b13, ROTATION_3_2, b6); |
|
b6 -= b13; |
|
b9 = XorRotr(b9, ROTATION_3_3, b4); |
|
b4 -= b9; |
|
b1 = XorRotr(b1, ROTATION_3_4, b14); |
|
b14 -= b1; |
|
b5 = XorRotr(b5, ROTATION_3_5, b8); |
|
b8 -= b5; |
|
b3 = XorRotr(b3, ROTATION_3_6, b10); |
|
b10 -= b3; |
|
b7 = XorRotr(b7, ROTATION_3_7, b12); |
|
b12 -= b7; |
|
|
|
b7 = XorRotr(b7, ROTATION_2_0, b0); |
|
b0 -= b7; |
|
b5 = XorRotr(b5, ROTATION_2_1, b2); |
|
b2 -= b5; |
|
b3 = XorRotr(b3, ROTATION_2_2, b4); |
|
b4 -= b3; |
|
b1 = XorRotr(b1, ROTATION_2_3, b6); |
|
b6 -= b1; |
|
b15 = XorRotr(b15, ROTATION_2_4, b12); |
|
b12 -= b15; |
|
b13 = XorRotr(b13, ROTATION_2_5, b14); |
|
b14 -= b13; |
|
b11 = XorRotr(b11, ROTATION_2_6, b8); |
|
b8 -= b11; |
|
b9 = XorRotr(b9, ROTATION_2_7, b10); |
|
b10 -= b9; |
|
|
|
b9 = XorRotr(b9, ROTATION_1_0, b0); |
|
b0 -= b9; |
|
b13 = XorRotr(b13, ROTATION_1_1, b2); |
|
b2 -= b13; |
|
b11 = XorRotr(b11, ROTATION_1_2, b6); |
|
b6 -= b11; |
|
b15 = XorRotr(b15, ROTATION_1_3, b4); |
|
b4 -= b15; |
|
b7 = XorRotr(b7, ROTATION_1_4, b10); |
|
b10 -= b7; |
|
b3 = XorRotr(b3, ROTATION_1_5, b12); |
|
b12 -= b3; |
|
b5 = XorRotr(b5, ROTATION_1_6, b14); |
|
b14 -= b5; |
|
b1 = XorRotr(b1, ROTATION_1_7, b8); |
|
b8 -= b1; |
|
|
|
b1 = XorRotr(b1, ROTATION_0_0, b0); |
|
b0 -= b1; |
|
b3 = XorRotr(b3, ROTATION_0_1, b2); |
|
b2 -= b3; |
|
b5 = XorRotr(b5, ROTATION_0_2, b4); |
|
b4 -= b5; |
|
b7 = XorRotr(b7, ROTATION_0_3, b6); |
|
b6 -= b7; |
|
b9 = XorRotr(b9, ROTATION_0_4, b8); |
|
b8 -= b9; |
|
b11 = XorRotr(b11, ROTATION_0_5, b10); |
|
b10 -= b11; |
|
b13 = XorRotr(b13, ROTATION_0_6, b12); |
|
b12 -= b13; |
|
b15 = XorRotr(b15, ROTATION_0_7, b14); |
|
b14 -= b15; |
|
} |
|
|
|
/* |
|
* First subkey uninjection. |
|
*/ |
|
b0 -= kw[0]; |
|
b1 -= kw[1]; |
|
b2 -= kw[2]; |
|
b3 -= kw[3]; |
|
b4 -= kw[4]; |
|
b5 -= kw[5]; |
|
b6 -= kw[6]; |
|
b7 -= kw[7]; |
|
b8 -= kw[8]; |
|
b9 -= kw[9]; |
|
b10 -= kw[10]; |
|
b11 -= kw[11]; |
|
b12 -= kw[12]; |
|
b13 -= kw[13] + t[0]; |
|
b14 -= kw[14] + t[1]; |
|
b15 -= kw[15]; |
|
|
|
/* |
|
* Output cipher state. |
|
*/ |
|
state[0] = b0; |
|
state[1] = b1; |
|
state[2] = b2; |
|
state[3] = b3; |
|
state[4] = b4; |
|
state[5] = b5; |
|
state[6] = b6; |
|
state[7] = b7; |
|
state[8] = b8; |
|
state[9] = b9; |
|
state[10] = b10; |
|
state[11] = b11; |
|
state[12] = b12; |
|
state[13] = b13; |
|
state[14] = b14; |
|
state[15] = b15; |
|
} |
|
|
|
} |
|
|
|
} |
|
} |
|
#pragma warning restore |
|
#endif
|
|
|