培训考核三期,新版培训,网页版培训登录器
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

160 lines
5.4 KiB

#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
#pragma warning disable
using System;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Math;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC.Multiplier;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Security;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities;
namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Generators
{
internal class DHParametersHelper
{
private static readonly BigInteger Six = BigInteger.ValueOf(6);
private static readonly int[][] primeLists = BigInteger.primeLists;
private static readonly int[] primeProducts = BigInteger.primeProducts;
private static readonly BigInteger[] BigPrimeProducts = ConstructBigPrimeProducts(primeProducts);
private static BigInteger[] ConstructBigPrimeProducts(int[] primeProducts)
{
BigInteger[] bpp = new BigInteger[primeProducts.Length];
for (int i = 0; i < bpp.Length; ++i)
{
bpp[i] = BigInteger.ValueOf(primeProducts[i]);
}
return bpp;
}
/*
* Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
*
* (see: Handbook of Applied Cryptography 4.86)
*/
internal static BigInteger[] GenerateSafePrimes(int size, int certainty, SecureRandom random)
{
BigInteger p, q;
int qLength = size - 1;
int minWeight = size >> 2;
if (size <= 32)
{
for (;;)
{
q = new BigInteger(qLength, 2, random);
p = q.ShiftLeft(1).Add(BigInteger.One);
if (!p.IsProbablePrime(certainty, true))
continue;
if (certainty > 2 && !q.IsProbablePrime(certainty, true))
continue;
break;
}
}
else
{
// Note: Modified from Java version for speed
for (;;)
{
q = new BigInteger(qLength, 0, random);
retry:
for (int i = 0; i < primeLists.Length; ++i)
{
int test = q.Remainder(BigPrimeProducts[i]).IntValue;
if (i == 0)
{
int rem3 = test % 3;
if (rem3 != 2)
{
int diff = 2 * rem3 + 2;
q = q.Add(BigInteger.ValueOf(diff));
test = (test + diff) % primeProducts[i];
}
}
int[] primeList = primeLists[i];
for (int j = 0; j < primeList.Length; ++j)
{
int prime = primeList[j];
int qRem = test % prime;
if (qRem == 0 || qRem == (prime >> 1))
{
q = q.Add(Six);
goto retry;
}
}
}
if (q.BitLength != qLength)
continue;
if (!q.RabinMillerTest(2, random, true))
continue;
p = q.ShiftLeft(1).Add(BigInteger.One);
if (!p.RabinMillerTest(certainty, random, true))
continue;
if (certainty > 2 && !q.RabinMillerTest(certainty - 2, random, true))
continue;
/*
* Require a minimum weight of the NAF representation, since low-weight primes may be
* weak against a version of the number-field-sieve for the discrete-logarithm-problem.
*
* See "The number field sieve for integers of low weight", Oliver Schirokauer.
*/
if (WNafUtilities.GetNafWeight(p) < minWeight)
continue;
break;
}
}
return new BigInteger[] { p, q };
}
/*
* Select a high order element of the multiplicative group Zp*
*
* p and q must be s.t. p = 2*q + 1, where p and q are prime (see generateSafePrimes)
*/
internal static BigInteger SelectGenerator(BigInteger p, BigInteger q, SecureRandom random)
{
BigInteger pMinusTwo = p.Subtract(BigInteger.Two);
BigInteger g;
/*
* (see: Handbook of Applied Cryptography 4.80)
*/
// do
// {
// g = BigIntegers.CreateRandomInRange(BigInteger.Two, pMinusTwo, random);
// }
// while (g.ModPow(BigInteger.Two, p).Equals(BigInteger.One)
// || g.ModPow(q, p).Equals(BigInteger.One));
/*
* RFC 2631 2.2.1.2 (and see: Handbook of Applied Cryptography 4.81)
*/
do
{
BigInteger h = BigIntegers.CreateRandomInRange(BigInteger.Two, pMinusTwo, random);
g = h.ModPow(BigInteger.Two, p);
}
while (g.Equals(BigInteger.One));
return g;
}
}
}
#pragma warning restore
#endif