培训考核三期,新版培训,网页版培训登录器
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

299 lines
10 KiB

#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
#pragma warning disable
using System;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Generators;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Utilities;
namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Macs
{
/// <summary>
/// Poly1305 message authentication code, designed by D. J. Bernstein.
/// </summary>
/// <remarks>
/// Poly1305 computes a 128-bit (16 bytes) authenticator, using a 128 bit nonce and a 256 bit key
/// consisting of a 128 bit key applied to an underlying cipher, and a 128 bit key (with 106
/// effective key bits) used in the authenticator.
///
/// The polynomial calculation in this implementation is adapted from the public domain <a
/// href="https://github.com/floodyberry/poly1305-donna">poly1305-donna-unrolled</a> C implementation
/// by Andrew M (@floodyberry).
/// </remarks>
/// <seealso cref="BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Generators.Poly1305KeyGenerator"/>
[BestHTTP.PlatformSupport.IL2CPP.Il2CppEagerStaticClassConstructionAttribute]
public sealed class Poly1305 : IMac
{
private const int BlockSize = 16;
private readonly IBlockCipher cipher;
private readonly byte[] singleByte = new byte[1];
// Initialised state
/** Polynomial key */
private uint r0, r1, r2, r3, r4;
/** Precomputed 5 * r[1..4] */
private uint s1, s2, s3, s4;
/** Encrypted nonce */
private uint k0, k1, k2, k3;
// Accumulating state
/** Current block of buffered input */
private byte[] currentBlock = new byte[BlockSize];
/** Current offset in input buffer */
private int currentBlockOffset = 0;
/** Polynomial accumulator */
private uint h0, h1, h2, h3, h4;
/**
* Constructs a Poly1305 MAC, where the key passed to init() will be used directly.
*/
public Poly1305()
{
this.cipher = null;
}
/**
* Constructs a Poly1305 MAC, using a 128 bit block cipher.
*/
public Poly1305(IBlockCipher cipher)
{
if (cipher.GetBlockSize() != BlockSize)
{
throw new ArgumentException("Poly1305 requires a 128 bit block cipher.");
}
this.cipher = cipher;
}
/// <summary>
/// Initialises the Poly1305 MAC.
/// </summary>
/// <param name="parameters">a {@link ParametersWithIV} containing a 128 bit nonce and a {@link KeyParameter} with
/// a 256 bit key complying to the {@link Poly1305KeyGenerator Poly1305 key format}.</param>
public void Init(ICipherParameters parameters)
{
byte[] nonce = null;
if (cipher != null)
{
if (!(parameters is ParametersWithIV))
throw new ArgumentException("Poly1305 requires an IV when used with a block cipher.", "parameters");
ParametersWithIV ivParams = (ParametersWithIV)parameters;
nonce = ivParams.GetIV();
parameters = ivParams.Parameters;
}
if (!(parameters is KeyParameter))
throw new ArgumentException("Poly1305 requires a key.");
KeyParameter keyParams = (KeyParameter)parameters;
SetKey(keyParams.GetKey(), nonce);
Reset();
}
private void SetKey(byte[] key, byte[] nonce)
{
if (key.Length != 32)
throw new ArgumentException("Poly1305 key must be 256 bits.");
if (cipher != null && (nonce == null || nonce.Length != BlockSize))
throw new ArgumentException("Poly1305 requires a 128 bit IV.");
// Extract r portion of key (and "clamp" the values)
uint t0 = Pack.LE_To_UInt32(key, 0);
uint t1 = Pack.LE_To_UInt32(key, 4);
uint t2 = Pack.LE_To_UInt32(key, 8);
uint t3 = Pack.LE_To_UInt32(key, 12);
// NOTE: The masks perform the key "clamping" implicitly
r0 = t0 & 0x03FFFFFFU;
r1 = ((t0 >> 26) | (t1 << 6)) & 0x03FFFF03U;
r2 = ((t1 >> 20) | (t2 << 12)) & 0x03FFC0FFU;
r3 = ((t2 >> 14) | (t3 << 18)) & 0x03F03FFFU;
r4 = (t3 >> 8) & 0x000FFFFFU;
// Precompute multipliers
s1 = r1 * 5;
s2 = r2 * 5;
s3 = r3 * 5;
s4 = r4 * 5;
byte[] kBytes;
int kOff;
if (cipher == null)
{
kBytes = key;
kOff = BlockSize;
}
else
{
// Compute encrypted nonce
kBytes = new byte[BlockSize];
kOff = 0;
cipher.Init(true, new KeyParameter(key, BlockSize, BlockSize));
cipher.ProcessBlock(nonce, 0, kBytes, 0);
}
k0 = Pack.LE_To_UInt32(kBytes, kOff + 0);
k1 = Pack.LE_To_UInt32(kBytes, kOff + 4);
k2 = Pack.LE_To_UInt32(kBytes, kOff + 8);
k3 = Pack.LE_To_UInt32(kBytes, kOff + 12);
}
public string AlgorithmName
{
get { return cipher == null ? "Poly1305" : "Poly1305-" + cipher.AlgorithmName; }
}
public int GetMacSize()
{
return BlockSize;
}
public void Update(byte input)
{
singleByte[0] = input;
BlockUpdate(singleByte, 0, 1);
}
public void BlockUpdate(byte[] input, int inOff, int len)
{
int copied = 0;
while (len > copied)
{
if (currentBlockOffset == BlockSize)
{
ProcessBlock();
currentBlockOffset = 0;
}
int toCopy = System.Math.Min((len - copied), BlockSize - currentBlockOffset);
Array.Copy(input, copied + inOff, currentBlock, currentBlockOffset, toCopy);
copied += toCopy;
currentBlockOffset += toCopy;
}
}
private void ProcessBlock()
{
if (currentBlockOffset < BlockSize)
{
currentBlock[currentBlockOffset] = 1;
for (int i = currentBlockOffset + 1; i < BlockSize; i++)
{
currentBlock[i] = 0;
}
}
ulong t0 = Pack.LE_To_UInt32(currentBlock, 0);
ulong t1 = Pack.LE_To_UInt32(currentBlock, 4);
ulong t2 = Pack.LE_To_UInt32(currentBlock, 8);
ulong t3 = Pack.LE_To_UInt32(currentBlock, 12);
h0 += (uint)(t0 & 0x3ffffffU);
h1 += (uint)((((t1 << 32) | t0) >> 26) & 0x3ffffff);
h2 += (uint)((((t2 << 32) | t1) >> 20) & 0x3ffffff);
h3 += (uint)((((t3 << 32) | t2) >> 14) & 0x3ffffff);
h4 += (uint)(t3 >> 8);
if (currentBlockOffset == BlockSize)
{
h4 += (1 << 24);
}
ulong tp0 = mul32x32_64(h0,r0) + mul32x32_64(h1,s4) + mul32x32_64(h2,s3) + mul32x32_64(h3,s2) + mul32x32_64(h4,s1);
ulong tp1 = mul32x32_64(h0,r1) + mul32x32_64(h1,r0) + mul32x32_64(h2,s4) + mul32x32_64(h3,s3) + mul32x32_64(h4,s2);
ulong tp2 = mul32x32_64(h0,r2) + mul32x32_64(h1,r1) + mul32x32_64(h2,r0) + mul32x32_64(h3,s4) + mul32x32_64(h4,s3);
ulong tp3 = mul32x32_64(h0,r3) + mul32x32_64(h1,r2) + mul32x32_64(h2,r1) + mul32x32_64(h3,r0) + mul32x32_64(h4,s4);
ulong tp4 = mul32x32_64(h0,r4) + mul32x32_64(h1,r3) + mul32x32_64(h2,r2) + mul32x32_64(h3,r1) + mul32x32_64(h4,r0);
h0 = (uint)tp0 & 0x3ffffff; tp1 += (tp0 >> 26);
h1 = (uint)tp1 & 0x3ffffff; tp2 += (tp1 >> 26);
h2 = (uint)tp2 & 0x3ffffff; tp3 += (tp2 >> 26);
h3 = (uint)tp3 & 0x3ffffff; tp4 += (tp3 >> 26);
h4 = (uint)tp4 & 0x3ffffff;
h0 += (uint)(tp4 >> 26) * 5;
h1 += (h0 >> 26); h0 &= 0x3ffffff;
}
public int DoFinal(byte[] output, int outOff)
{
Check.DataLength(output, outOff, BlockSize, "Output buffer is too short.");
if (currentBlockOffset > 0)
{
// Process padded block
ProcessBlock();
}
h1 += (h0 >> 26); h0 &= 0x3ffffff;
h2 += (h1 >> 26); h1 &= 0x3ffffff;
h3 += (h2 >> 26); h2 &= 0x3ffffff;
h4 += (h3 >> 26); h3 &= 0x3ffffff;
h0 += (h4 >> 26) * 5; h4 &= 0x3ffffff;
h1 += (h0 >> 26); h0 &= 0x3ffffff;
uint g0, g1, g2, g3, g4, b;
g0 = h0 + 5; b = g0 >> 26; g0 &= 0x3ffffff;
g1 = h1 + b; b = g1 >> 26; g1 &= 0x3ffffff;
g2 = h2 + b; b = g2 >> 26; g2 &= 0x3ffffff;
g3 = h3 + b; b = g3 >> 26; g3 &= 0x3ffffff;
g4 = h4 + b - (1 << 26);
b = (g4 >> 31) - 1;
uint nb = ~b;
h0 = (h0 & nb) | (g0 & b);
h1 = (h1 & nb) | (g1 & b);
h2 = (h2 & nb) | (g2 & b);
h3 = (h3 & nb) | (g3 & b);
h4 = (h4 & nb) | (g4 & b);
ulong f0, f1, f2, f3;
f0 = ((h0 ) | (h1 << 26)) + (ulong)k0;
f1 = ((h1 >> 6 ) | (h2 << 20)) + (ulong)k1;
f2 = ((h2 >> 12) | (h3 << 14)) + (ulong)k2;
f3 = ((h3 >> 18) | (h4 << 8 )) + (ulong)k3;
Pack.UInt32_To_LE((uint)f0, output, outOff);
f1 += (f0 >> 32);
Pack.UInt32_To_LE((uint)f1, output, outOff + 4);
f2 += (f1 >> 32);
Pack.UInt32_To_LE((uint)f2, output, outOff + 8);
f3 += (f2 >> 32);
Pack.UInt32_To_LE((uint)f3, output, outOff + 12);
Reset();
return BlockSize;
}
public void Reset()
{
currentBlockOffset = 0;
h0 = h1 = h2 = h3 = h4 = 0;
}
private static ulong mul32x32_64(uint i1, uint i2)
{
return ((ulong)i1) * i2;
}
}
}
#pragma warning restore
#endif